
CSA 283

 1 of 7 PROGRAM1 CSA283 Spring 2007.doc

 CSA 283 – Spring 2007
Program #1 Due: February 2, 2007

“Multi-User Game”

Objectives: In this assignment you will implement the communication portions of a
multi-user computer game. The game will utilize of a client/server architecture to allow
multiple players on interact in a shared 2D world. The server portion of this networked
application will be responsible for receiving update messages from individual clients and
forwarding those messages to all other clients. It will also attempt to ensure that each
client is provided with a consistent set of obstacles on start up. Clients will be
responsible for sending update messages for a single game entity and receiving update
messages via the server for all other game entities. Game communication will be largely
be based on the of best effort, connectionless, UDP/IP network communication. At your
option you may use TDP/IP communication to ensure reliable game initialization.

Description:

Below is a screen capture of the space game. The game is played by maneuvering your
own ship and ramming the ships of your opponents. In a head on collision both ships
are destroyed. Otherwise, only the ship of the opponent is destroyed. The game also
includes obstacles through which no ship can be moved. Your own ship is maneuvered
by pressing the buttons to the right of the display. The starter code for the game can be
run as is but has no communication with the server that provides the locations of
obstacles and updates giving the position of other players.

The driving class is SpaceGame. Your own ship can be inserted into the game by
pressing the “join” button. You can maneuver your ship around using the “Move,” “Turn
Left,” and “Turn Right” buttons.

CSA 283

 2 of 7 PROGRAM1 CSA283 Spring 2007.doc

There are numerous classes included in the SpaceGame project. You will be adding
code to the SpaceGame class. You may also decide to write Receiver, and Sender
classes. The SpaceGame class handles user inputs by updating the Sector display for
the user’s ship. You must add code where you see a // TODO comment to send and
receive messages and create a Datagram socket(s). Both the server
(SpaceGameServer.java) and the client (SpaceGame.java) have been started for you.

The server is responsible for sending obstacles to new clients, and receiving and
forwarding messages. It should maintain a list or array containing the IP addresses and
port numbers of all participating clients. When a client joins the game. The server
should add it to this list. When forwarding messages it should not send a copy back to
the originating client.

During initialization the Clients sends a “start” message to the server and downloads the
locations of all obstacles in the game. The client must know the IP address and port
number of the Server a-priori. Once the obstacles are received the SpaceGame class
must receive update messages from the server and use them to update the sector
display and send update messages to the server each time the user presses the “Join,”
“Move,” “Turn Left,” or “Turn Right” button.

It is recommended that you write separate Sender and Receiver classes for your client.
The Sender class could be responsible for receiving information from the SpaceGame
object and placing that information into a message of the appropriate type and sending
the message to the server. After initialization, the Receiver would use and infinite loop
or run on a separate thread to continuously receive message from server and using the
information contained in the messages to update the display encapsulated in a Sector
object.

Getting Obstacles

The IP address of the server is known by client ahead of time. After receiving an initial
“Join” message from a client, the server sends the x y locations of obstacles as pairs of
ints. The client uses each pair of numbers to create an obstacle and add it to the sector
display using the addObstacle method. The server indicates the end of obstacle location
data by sending a negative number.

Updating the Display

Three types of messages should be used for in the game communication. The message
types are “join,” “update,” and “remove.” The messages have the following format. The
first four fields and the last fields should be of type int. The IP fields should be of type
byte.

Code X position Y position Heading IP1 IP2 IP3 IP4 Port

CSA 283

 3 of 7 PROGRAM1 CSA283 Spring 2007.doc

The codes for the “join,” “update,” and “remove” messages are respectively 0, 1, and 2.
The entity to which the message refers is uniquely identified by the IP fields and the port
number. In all cases the position and heading fields carry the position and heading
information of the ship being referred to. The getByAddress(byte[] addr) method can be
used to construct a InetAddress object using the IP bytes in the message.

The join message is sent by a user that has just joined or rejoined the game. The server
receives this message and forwards it to all other clients. Upon receiving a join
message, clients should construct an AlienSpaceCraft object using the information
contained in the message and add the AlienSpaceCraft to the Sector display using the
updateOrAdd method.

The update message is sent by a user each time a turn or move is made and forwarded
by the sever. Upon receipt the client should construct an AlienSpaceCraft object using
the information contained in the message to update the Sector display for the object
using the updateOrAdd method.

The remove message is sent by a user when the user has rammed and thus destroyed
another ship. If the collision was head on the user sends a remove message for itself as
well. Upon receipt, the client should construct an AlienSpaceCraft object using the
information contained in the message to update the Sector display using the remove
method.

Advance Functionality

Successfully completing the above project will probably get you a grade in the high C
low B range. To get more points consider implementing some of the following:

• Multi threaded Receiver class
• TCP/IP communication for passing obstacle locations.
• Quit messages from clients when they leave the game.
• Have server collect update messages and forward in a single Datagram

Starting files : AlienSpaceCraft.java, Constants.java, OwnSpaceCraft.java, Sector.java,
SpaceCraft.java, SpaceGame.java, Obstacle.java, and ObstacleServer.java, and
SpaceGui.java.

Input: User mouse button clicks and datagrams from other users.

Program Output: Game display and join, update, and remove messages to other
users. Obstacle location data messages.

Grading . Scores will be assigned based on the correctness and completeness of your
program, the logic and efficiency of your program design, and your ability to follow the stylistic
conventions below.

What to turn in:

CSA 283

 4 of 7 PROGRAM1 CSA283 Spring 2007.doc

1. Hardcopy of your any classes you write or modify: Do not turn in hard copies of

provided classes.

2. Lab cover sheet: Fill out the cover sheet and staple the cover sheet to the front of the

Sender code

3. Electronic copy of your Project: Copy your project folder to the desktop. Change the

name to your last name follow by “programOne”. Place a copy of that folder in

L:\Turnins\bachmaer\csa283\Programming Assignments\Programming Assignment 1.

Your project must run with eclipse.

Stylistic Requirements:

Document your program with comments so that I can follow your logic. All method,
class, and variable names should be meaningful. All variable declarations should be
commented. Include your name on a separate line at the top of the program. Indent
code three spaces. Use single blank lines within methods and white space to make
code more readable. Leave two lines between method definitions. Put an “end”
comment after the closing braces for each method and class as shown below

class ArnieHelp
{

 public static void main(String[] args)
 {
 . . .
 } // end main

} // end ArnieHelp class

Identifiers:

Be sure to use meaningful terms for all identifiers. Class names must begin with an
upper case letter. Variable, class data members, and method name must begin with a
lower case letter. Identifiers for constants should be all upper case with individual words
separated by an under score. For example:

final int DAYS_IN_YEAR = 365;

Comments:

All fields and method variables should have a comment indicating their purpose, such
as:
 // Total bank account balance.
 private double accountBalance;

CSA 283

 5 of 7 PROGRAM1 CSA283 Spring 2007.doc

JavaDoc comments for each public class should look like the following (include the
course, the project number, a description of the class, your name and version (use
@version and @author):

/**
 * CSA 283 Project 1: Help out Arnie.
 *
 * Calculates distance and average speed while running.
 *
 * @author Eric Bachmann
 * @version 1.0 September 14, 2001
 */
class ArnieHelp...

JavaDoc comments for each method should look like the following. Include @return if
the method returns a value. Include on @param tag for each of the arguments a method
takes:
 /**
 * Increases the account balance by the amount
 *
 * @param the deposit amount
 * @return the updated balance
 */
 public double deposit(double amount)

JavaDoc comments for each public data member should look like the following:

 /** Holds the balance of the bank account */
 public double balance;

Program Indentation:

Every set of curly braces in your program defines a code block. In general every thing
inside a code block is indented one tab space from the position where the code block
began. This applies to the bodies of classes and methods as well as any code block
associated with a loop, if or else statement. Follow the indentation conventions below.
Again, there should be two blank lines between each method definition and no more
that one blank line in a row within the methods. All if and else statements must have
curly braces.

class SomeClass
{

 private double someDataMember;

 public void someMethod()
 {
 statement1;

 if (someCondition) {
 statement in if 1;

 }
 else {

CSA 283

 6 of 7 PROGRAM1 CSA283 Spring 2007.doc

 statement in else 1;
 }

 statement3;

 } // end someMethod

 public void switchMethod()
 {
 switch(some int expression) {

 case –1:
 statements;
 break;

 case 0:
 case 1:
 statements;
 break;

 default:
 statements;
 break;
 }

 } // end switchMethod

} // end SomeClass

There should be nothing in your Sender code beyond column 80. Otherwise, your
indentation pattern will be destroyed by wrap arounds in the hard copy.

Some Design and Logic Considerations

1 Use many short methods. No method should be more than one page long. Less than

half a page is even better.
2 Avoid the use of “magic numbers” in your code. Use constant variables instead.
3 Don’t burn memory by repeatedly instantiating objects when existing ones could be

used.
4 Don’t make a variable a class data member if it could be a local variable to a single

method.
5 Use public, package, protected, and private access specifiers in an appropriate

manner.
6 More to come…

CSA 283

 7 of 7 PROGRAM1 CSA283 Spring 2007.doc

CSA 283 – Spring 2007
Program #1 Due: February 2, 2007

“Multi-User Game”
100 Points Possible

Name __ Section _____A________

List any enhanced features you implemented.

Comments by grader:

