

CHAPTER

16

Swing I

16.1 EVENT-DRIVEN PROGRAMMING 783

Events and Listeners 783

16.2 BUTTONS, EVENTS, AND OTHER SWING
BASICS 784

Example: A Simple Window 785

Pitfall: Forgetting to Program the Close-Window
Button 790

Pitfall: Forgetting to Use

getContentPane 791

Buttons 792

Action Listeners and Action Events 793

Pitfall: Changing the Heading for

actionPerformed 795

Tip: Ending a Swing Program 796

Example: A Better Version of Our First Swing GUI 796

Labels 800

Color 800

Example: A GUI with a Label and Color 802

16.3 CONTAINERS AND LAYOUT MANAGERS 805

Border Layout Managers 805

Flow Layout Managers 809

Grid Layout Managers 810

Panels 815

Example: A Tricolor Built with Panels 815

The

Container Class 816

Tip: Code a GUI’s Look and Actions Separately 823

The Model-View-Controller Pattern

✜ 823

16.4 MENUS AND BUTTONS 825

Example: A GUI with a Menu 825

Menu Bars, Menus, and Menu Items 825

Nested Menus

✜ 831

The

AbstractButton Class 832

The

setActionCommand Method 833

Listeners As Inner Classes

✜ 835

16.5 TEXT FIELDS AND TEXT AREAS 838

Text Areas and Text Fields 838

Tip: Labeling a Text Field 845

Tip: Inputting and Outputting Numbers 845

 A Swing Calculator 846

CHAPTER SUMMARY 852
ANSWERS TO SELF-TEST EXERCISES 852
PROGRAMMING PROJECTS 860

5640_ch16.fm Page 781 Friday, February 13, 2004 4:56 PM

16

Swing I

It Don’t Mean a Thing If It Ain’t Got That Swing

Song Title,

Duke Ellington

INTRODUCTION

This is the first of three chapters that present the basic classes in the Swing

package and teach the basic techniques for using these classes to define

GUIs.
GUIs

 are windowing interfaces that handle user input and output.

GUI

 is pro-
nounced “gooey” and stands for graphical user interface

. Entire books have
been written on Swing, so we will not have room to give you a complete
description of Swing in three chapters. However, we will teach you enough to
allow you to write a variety of windowing interfaces.

The AWT

 (Abstract Window Toolkit

) package is an older package designed
for doing windowing interfaces. Swing can be viewed as an improved version
of the AWT. However, Swing did not completely replace the AWT package.
Some AWT classes are replaced by Swing classes, but other AWT classes are
needed when using Swing. We will use classes from both Swing and the AWT.

Swing GUIs are designed using a particular form of object-oriented pro-
gramming that is known as

event-driven programming.

 Our first section begins
with a brief overview of event-driven programming.

PREREQUISITES

Before covering this chapter (and the next two chapters on applets and more
Swing), you need to have covered Chapters 1 through 5, Chapters 7 (inherit-
ance), Chapter 13 (interfaces and inner classes), and Section 8.2 of Chapter 8
(abstract classes). (Section 8.2 of Chapter 8 does not require Section 8.1.)
Except for one subsection at the end of this chapter, you need not have read
any of the other chapters that precede this chapter.

To cover the last subsection entitled “A Swing Calculator,” you need to first
read Chapter 9, which covers exceptions. If you have not yet read Chapter 9,
you can skip that last section.

GUI

Windowing systems that interact with the user are often called GUIs. GUI is pronounced
“gooey” and stands for graphical user interface.

Swing

GUI

AWT

5640_ch16.fm Page 782 Friday, February 13, 2004 4:56 PM

Event-Driven Programming 783

Event-Driven Programming

My duty is to obey orders.

Thomas Jonathan (Stonewall) Jackson

Event-driven programming

 is a programming style that uses a signal-and-response
approach to programming. Signals to objects are things called

events,

 a concept we
explain in this section.

■ EVENTS AND LISTENERS

Swing programs use events and event handlers. An event

 is an object that acts as a sig-
nal to another object known as a listener

. The sending of the event is called firing the
event

. The object that fires the event is often a GUI component, such as a button. The
button fires the event in response to being clicked. The listener object performs some
action in response to the event. For example, the listener might place a message on the
screen in response to a particular button being clicked. A given component may have
any number of listeners, from zero to several listeners. Each listener might respond to a
different kind of event, or multiple listeners might respond to the same events.

If you have read Chapter 9 on exception handling, then you have already seen one
specialized example of event-driven programming.

1

 An exception object is an event.
The throwing of an exception is an example of firing an event (in this case firing the
exception event). The listener is the

catch

 block that catches the event.

In Swing GUIs an event often represents some action such as clicking a mouse,
dragging the mouse, pressing a key on the keyboard, clicking the close-window button
on a window, or any other action that is expected to elicit a response. A listener object
has methods that specify what will happen when events of various kinds are received by
the listener. These methods that handle events are called event handlers

. You the pro-
grammer will define (or redefine) these event-handler methods. The relationship
between an event-firing object, such as a button, and its event-handling listener is
shown diagrammatically in Display 16.1.

Event-driven programming is very different from most programming you’ve seen
before now. All our previous programs consisted of a list of statements executed in
order. There were loops that repeat statements and branches that choose one of a list of
statements to execute next. However, at some level, each run of a program consists of a
list of statements performed by one agent (the computer) that executes the statements
one after the other in order.

Event-driven programming is a very different game. In event-driven programming,
you create objects that can fire events, and you create listener objects to react to the
events. For the most part, your program does not determine the order in which things
happen. The events determine that order. When an event-driven program is running,

1

If you have not yet covered Chapter 9 on exceptions, you can safely ignore this paragraph.

16.1

event-driven
programming

event

listener

firing an event

event handler

5640_ch16.fm Page 783 Friday, February 13, 2004 4:56 PM

784 Chapter 16 Swing I

the next thing that happens depends on the next event. It’s as though the listeners were
robots that interact with other objects (possibly other robots) in response to events (sig-
nals) from these other objects. You program the robots, but the environment and other
robots determine what any particular robot will actually end up doing.

If you have never done event-driven programming before, one aspect of it may seem
strange to you:

You will be writing definitions for methods that you will never invoke in
any program.

 This will likely feel a bit strange at first, because a method is of no value
unless it is invoked. So, somebody or something other than you, the programmer, must
be invoking these methods. That is exactly what does happen. The Swing system auto-
matically invokes certain methods when an event signals that the method needs to be
called.

Event-driven programming with the Swing library makes extensive use of inherit-
ance. The classes you define will be derived classes of some basic Swing library classes.
These derived classes will inherit methods from their base class. For many of these
inherited methods, library software will determine when these methods are invoked,
but you will override the definition of the inherited method to determine what will
happen when the method is invoked.

Buttons, Events, and Other Swing Basics

One button click is worth a thousand key strokes.

Anonymous

In this section we present enough about Swing to allow you to do some simple GUI
programs.

Display 16.1 Event Firing and an Event Listener

The component (for example, a
button) fires an event.

This listener object invokes an event handler
method with the event as an argument.

eventcomponent listener

16.2

5640_ch16.fm Page 784 Friday, February 13, 2004 4:56 PM

Buttons, Events, and Other Swing Basics 785

Example

A SIMPLE WINDOW

Display 16.2 contains a Swing program that produces a simple window. The window contains
nothing but a button on which is written

"Click to end program.". If the user follows the
instructions and clicks the button with his or her mouse, the program ends.

The

import statements give the names of the classes used and which package they are in. What
we and others call the Swing library is the package named

javax.swing. The AWT library is the
package

java.awt. Note that one package name contains an “

x” and one does not.

This program is a simple class definition with only a

main method. The first line in the

main
method creates an object of the class

JFrame. That line is reproduced below:

JFrame firstWindow = new JFrame();

This is an ordinary declaration of a variable named

firstWindow and an invocation of the no-
argument constructor for the class

JFrame. A

JFrame object is a basic window. A

JFrame object
includes a border and the usual three buttons for minimizing the window down to an icon,
changing the size of the window, and closing the window. These buttons are shown in the upper-
right corner of the window, which is typical, but if your operating system normally places these
buttons someplace else, that is where they will likely be located in a

JFrame on your computer.

The initial size of the

JFrame window is set using the

JFrame method

setSize, as follows:

firstWindow.setSize(WIDTH, HEIGHT);

In this case

WIDTH and

HEIGHT are defined

int constants. The units of measure are pixels, so the
window produced is 300 pixels by 200 pixels. (The term pixel is defined in the box entitled
“Pixel.”) As with other windows, you can change the size of a

JFrame by using your mouse to
drag a corner of the

JFrame window.

The buttons for minimizing the window down to an icon and for changing the size of the window
behave as they do in any of the other windows you have used. The minimization button shrinks
the window down to an icon. (To restore the window, you click the icon.) The second button

JFrame

An object of the class

JFrame is what you think of as a window. It automatically has a border and
some basic buttons for minimizing the window and similar actions. As you will see, a

JFrame
object can have buttons and many other components added to the window and programmed for
action.

javax.swing

java.awt

JFrame

setSize

5640_ch16.fm Page 785 Friday, February 13, 2004 4:56 PM

786 Chapter 16 Swing I

Display 16.2 A First Swing Demonstration Program (Part 1 of 2)

1 import javax.swing.JFrame;
2 import javax.swing.JButton;

3 public class FirstSwingDemo
4 {
5 public static final int WIDTH = 300;
6 public static final int HEIGHT = 200;

7 public static void main(String[] args)
8 {
9 JFrame firstWindow = new JFrame();

10 firstWindow.setSize(WIDTH, HEIGHT);

11 firstWindow.setDefaultCloseOperation(
12 JFrame.DO_NOTHING_ON_CLOSE);

13 JButton endButton = new JButton("Click to end program.");
14 EndingListener buttonEar = new EndingListener();
15 endButton.addActionListener(buttonEar);
16 firstWindow.getContentPane().add(endButton);

17 firstWindow.setVisible(true);
18 }
19 }

1 import java.awt.event.ActionListener;
2 import java.awt.event.ActionEvent;

3 public class EndingListener implements ActionListener
4 {
5 public void actionPerformed(ActionEvent e)
6 {
7 System.exit(0);
8 }
9 }

This program is not typical of the
style we will use in Swing programs.

This is the file FirstSwingDemo.java.

This is the file EndingListener.java.

5640_ch16.fm Page 786 Tuesday, February 17, 2004 5:39 PM

Buttons, Events, and Other Swing Basics 787

PIXEL

A pixel is the smallest unit of space on which your screen can write. With Swing, both the size and
the position of objects on the screen are measured in pixels. The more pixels you have on a screen,
the greater the screen resolution.

RESOLUTION’S RELATIONSHIP TO OBJECT SIZE

The relationship between resolution and size can seem confusing at first. A high-resolution screen
is a screen of better quality than a low-resolution screen, so why does an object look smaller on a
high-resolution screen and larger on a low-resolution screen? Consider a very simple case,
namely a one-pixel “dot.” For a screen of fixed size, if there are very many pixels (high resolu-
tion), then the one-pixel dot will be very small. If there are fewer pixels (low resolution) for the
same size screen, then each pixel must be larger since the smaller number of pixels cover the same
screen. So, if there are fewer pixels, the one-pixel dot will be larger. Similarly, a two-pixel figure
or a figure of any number of pixels will look larger on a low-resolution (fewer pixels) screen.

Display 16.2 A First Swing Demonstration Program (Part 2 of 2)

RESULTING GUI

Close-window button

Minimize (iconify)

Change window size to full screen.

pixel

5640_ch16.fm Page 787 Tuesday, February 17, 2004 5:39 PM

788 Chapter 16 Swing I

changes the size of the window back and forth from full screen to a smaller size. The close-window
button can behave in different ways depending on how it is set by your program.

The behavior of the close-window button is set with the JFrame method setDefaultCloseOp-
eration. The line of the program that sets the behavior of the close-window button is repro-
duced below:

firstWindow.setDefaultCloseOperation(
 JFrame.DO_NOTHING_ON_CLOSE);

In this case the argument JFrame.DO_NOTHING_ON_CLOSE is a defined constant named
DO_NOTHING_ON_CLOSE, which is defined in the JFrame class. This sets the close-window but-
ton so that when it is clicked nothing happens (unless we programmed something to happen,
which we have not done). Other possible arguments are given in Display 16.3.

Display 16.3 Some Methods in the Class JFrame (Part 1 of 2)

The class JFrame is in the javax.swing package.

public JFrame()

Constructor that creates an object of the class JFrame.

public JFrame(String title)

Constructor that creates an object of the class JFrame with the title given as the argument.

public void setDefaultCloseOperation(int operation)

Sets the action that will happen by default when the user clicks the close-window button. The argument
should be one of the following defined constants:

JFrame.DO_NOTHING_ON_CLOSE: Do nothing. The JFrame does nothing, but if there are any regis-
tered window listeners, they are invoked. (Window listeners are explained in Chapter 18.)

JFrame.HIDE_ON_CLOSE: Hide the frame after invoking any registered WindowListener objects.

JFrame.DISPOSE_ON_CLOSE: Hide and dispose the frame after invoking any registered window lis-
teners. When a window is disposed it is eliminated but the program does not end. To end the program,
you use the next constant as an argument to setDefaultCloseOperation.

JFrame.EXIT_ON_CLOSE: Exit the application using the System exit method. (Do not use this for
frames in applets. Applets are discussed in Chapter 17.)

If no action is specified using the method setDefaultCloseOperation, then the default action taken is
JFrame.HIDE_ON_CLOSE.

Throws an IllegalArgumentException if the argument is not one of the values listed above. a

Throws a SecurityException if the argument is JFrame.EXIT_ON_CLOSE and the Security Manager
will not allow the caller to invoke System.exit. (You are not likely to encounter this case.)

a If you have not yet covered Chapter 9 on exceptions, you can safely ignore all references to “throwing exceptions.”

setDefault-
Close-

Operation

5640_ch16.fm Page 788 Friday, February 13, 2004 4:56 PM

Buttons, Events, and Other Swing Basics 789

Display 16.3 Some Methods in the Class JFrame (Part 2 of 2)

The method setDefaultCloseOperation takes a single int argument, and each of the con-
stants described in Display 16.3 is an int constant. However, do not think of them as int values.
Think of them as policies for what happens when the user clicks the close-window button. It was
convenient to name these policies by int values. However, they could just as well have been
named by char values or String values or something else. The fact that they are int values is
an incidental detail of no real importance.

Descriptions of some of the most important methods in the class JFrame are given in Display 16.3.
Some of these methods will not be explained until later in this chapter. A more complete list of
methods for the class JFrame is given in Appendix 4.

A JFrame can have components added, such as buttons, menus, and text labels. However, things
are not added directly to the JFrame. Instead, they are added to something called the content

public void setSize(int width, int height)

Sets the size of the calling frame so that it has the width and height specified. Pixels are the units of
length used.

public void setTitle(String title)

Sets the title for this frame to the argument string.

public Container getContentPane()

Returns the content pane of the calling JFrame object. Container is a class in the package java.awt.

To add a component to the JFrame use

getContentPane().add(Component componentAdded)

You do not use the add method directly on a JFrame, but instead use add with the content pane of the
JFrame. Use of the add method with a JFrame calling object will produce a run-time error.

To set the layout manager use

 getContentPane().setLayout(LayoutManager manager)

 Layout managers are discussed later in this chapter.

public void setJMenuBar(JMenuBar menubar)

Sets the menubar for the calling frame. (Menus and menu bars are discussed later in this chapter.)

public void dispose()

Eliminates the calling frame and all its subcomponents. Any memory they use is released for reuse. If there
are items left (items other than the calling frame and its subcomponents), then this does not end the pro-
gram. (The method dispose is discussed in Chapter 18.)

5640_ch16.fm Page 789 Friday, February 13, 2004 4:56 PM

790 Chapter 16 Swing I

Pitfall

pane of the JFrame. A JFrame has various layers that can have components added to them. The
main layer, and the only one we will use, is called the content pane. For our purposes you can
think of the content pane as the “inside” of the JFrame. You retrieve the content pane of the
JFrame with the accessor method getContentPane; you then add components to the content
pane using the method add of the content pane. In Display 16.2 these two actions are combined
into the following line, which adds the JButton object endButton to the (content pane of the)
JFrame:

firstWindow.getContentPane().add(endButton);

The description of how the JButton named endButton is created and programmed will be
given in the two subsections entitled “Buttons” and “Action Listeners and Action Events” a little
later in this section. We end this subsection by jumping ahead to the last line of the program,
which is

firstWindow.setVisible(true);

This makes the JFrame window visible on the screen. At first glance this may seem strange. Why
not have windows automatically become visible. Why would you create a window if you did not
want it to be visible? The answer is that you may not want it to be visible at all times. You have
certainly experienced windows that disappear and reappear. To hide the window, which is not
desirable in this example, you would replace the argument true with false.

FORGETTING TO PROGRAM THE CLOSE-WINDOW BUTTON

The following lines from Display 16.2 ensure that when the user clicks the close-window button,
nothing happens:

firstWindow.setDefaultCloseOperation(
 JFrame.DO_NOTHING_ON_CLOSE);

If you forget to program the close-window button, then the default action is as if you had set it
the following way:

firstWindow.setDefaultCloseOperation(
 JFrame.HIDE_ON_CLOSE);

In the program in Display 16.2 this would mean that if the user clicks the close-window button, the
window will hide (become invisible and inaccessible), but the program will not end, which is a
pretty bad situation. Since the window would be hidden, there would be no way to click the
"Click to end program." button. You would need to use some operating system command
that forces the program to end. That is an operating system topic, not a Java topic, and the exact
command depends on which operating system you are using.

content pane

getContent-
Pane

setVisible

5640_ch16.fm Page 790 Friday, February 13, 2004 4:56 PM

Buttons, Events, and Other Swing Basics 791

Pitfall

FORGETTING TO USE getContentPane

Recall that in Display 16.2 we added the button endButton to the JFrame named firstWindow
as follows:

firstWindow.getContentPane().add(endButton);

Because you are “adding endButton to firstWindow,” you might be tempted to use the fol-
lowing instead:

firstWindow.add(endButton);

However, if you omit getContentPane(), your program will not work correctly. Moreover, the
compiler will not warn you about this mistake. You will, however, get a run-time error message.

THE setVisible METHOD

Many classes of Swing objects have a setVisible method. The setVisible method takes one
argument of type boolean. If w is an object, such as a JFrame window, that can be displayed on
the screen, then the call

w.setVisible(true);

will make w visible. The call

w.setVisible(false);

will hide w.

SYNTAX:

Object_For_Screen.setVisible(Boolean_Expression);

EXAMPLE (FROM DISPLAY 16.2):

public static void main(String[] args)
{
 JFrame firstWindow = new JFrame();
 .
 .
 .
 firstWindow.setVisible(true);
}

5640_ch16.fm Page 791 Friday, February 13, 2004 4:56 PM

792 Chapter 16 Swing I

Self-Test Exercises

1. What Swing class do you normally use to define a window? Any window class that you
define would normally be an object of this class.

2. What units of measure are used in the following call to setSize that appeared in the main
method of the program in Display 16.2? In other words, 300 what? Inches? Centimeters?
Light years? And similarly, 200 what?

firstWindow.setSize(WIDTH, HEIGHT);

which is equivalent to

firstWindow.setSize(300, 200);

3. What is the method call to set the close-window button of the JFrame someWindow so that
nothing happens when the user clicks the close-window button in someWindow?

4. What is the method call to set the close-window button of the JFrame someWindow so that
the program ends when the user clicks the close-window button in someWindow?

5. What happens when you click the minimizing button of the JFrame shown in Display 16.2?

6. Suppose someWindow is a JFrame and n is an int variable with some value. Give a Java state-
ment that will make someWindow visible if n is positive and hide someWindow otherwise.

■ BUTTONS

A button object is created in the same way that any other object is created, but you use
the class JButton. For example, the following example from Display 16.2 creates a
button:

JButton endButton = new JButton("Click to end program.");

The argument to the construct, in this case "Click to end program.", is a string that
will be written on the button when the button is displayed. If you look at the picture
of the GUI in Display 16.2, you will see that the button is labeled "Click to end
program.".

We have already discussed adding components, such as buttons, to a JFrame. The
button is added to the content pane of the JFrame by the following line from Dis-
play 16.2:

firstWindow.getContentPane().add(endButton);

In the next subsection we explain the lines from Display 16.2 involving the method
addActionListener.

JButton

adding a button

5640_ch16.fm Page 792 Friday, February 13, 2004 4:56 PM

Buttons, Events, and Other Swing Basics 793

■ ACTION LISTENERS AND ACTION EVENTS

Clicking a button with your mouse (or activating certain other items in a GUI) creates
an object known as an event and sends the event object to another object (or objects)
known as the listener(s). This is called firing the event. The listener then performs some
action. When we say that the event is “sent” to the listener object, what we really mean
is that some method in the listener object is invoked with the event object as the argu-
ment. This invocation happens automatically. Your Swing GUI class definition will not
normally contain an invocation of this method. However, your Swing GUI class defini-
tion does need to do two things:

First, for each button, it needs to specify what objects are listeners that will respond
to events fired by that button; this is called registering the listener.

Second, it must define the methods that will be invoked when the event is sent to
the listener. Note that these methods will be defined by you, but in normal circum-
stances, you will never write an invocation of these methods. The invocations will
take place automatically.

THE JButton CLASS

An object of the class JButton is displayed in a GUI as a component that looks like a button. You
click the button with your mouse to simulate pushing it. When creating an object of the class
JButton using new, you can give a string argument to the constructor and the string will be dis-
played on the button.

You can add JButton objects to a JFrame by using the method add to add the button to the
content pane of the JFrame. You will later see that you can also add buttons to other GUI objects
(known as “containers”) in a similar way.

A button’s action is programmed by registering a listener with the button using the method add-
ActionListener.

EXAMPLE:

JButton niceButton = new JButton("Click here");
niceButton.addActionListener(new SomeActionListenerClass());
someJFrame.getContentPane().add(niceButton);

THE CLOSE-WINDOW BUTTON IS NOT IN THE CLASS JButton

The buttons that you add to a GUI are all objects of the class JButton. The close-window button
and the other two accompanying buttons are not objects of the class JButton. They are part of
the JFrame object.

registering a
listener

5640_ch16.fm Page 793 Friday, February 13, 2004 4:56 PM

794 Chapter 16 Swing I

The following lines from Display 16.2 create an EndingListener object named but-
tonEar and register buttonEar as a listener to receive events from the button named
endButton:

EndingListener buttonEar = new EndingListener());
endButton.addActionListener(buttonEar);

The second line says that buttonEar is registered as a listener to endButton, which
means buttonEar will receive all events fired by endButton.

Different kinds of components require different kinds of listener classes to handle
the events they fire. A button fires events known as action events, which are handled by
listeners known as action listeners.

An action listener is an object whose class implements the ActionListener inter-
face. For example, the class EndingListener in Display 16.2 implements the Action-
Listener interface. The ActionListener interface has only one method heading that
must be implemented, namely the following:

 public void actionPerformed(ActionEvent e)

In the class EndingListener in Display 16.2, the actionPerformed method is defined
as follows:

public void actionPerformed(ActionEvent e)
{
 System.exit(0);
}

If the user clicks the button endButton, that sends an action event to the action lis-
tener for that button. But buttonEar is the action listener for the button endButton, so
the action event goes to buttonEar. When an action listener receives an action event,
the event is automatically passed as an argument to the method actionPerformed and
the method actionPerformed is invoked. If the event is called e, then the following
invocation takes place in response to endButton firing e:

buttonEar.actionPerformed(e);

In this case the parameter e is ignored by the method actionPerformed. The method
actionPerformed simply invokes System.exit and thereby ends the program. So, if the
user clicks endButton (the one labeled "Click to end program."), the net effect is to
end the program and so the window goes away.

Note that you never write any code that says

buttonEar.actionPerformed(e);

This action does happen, but the code for this is embedded in some class definition
inside the Swing and/or AWT libraries. Somewhere the code says something like

bla.actionPerformed(e);

addAction-
Listener

action event
action listener

Action-
Listener

action-
Performed

5640_ch16.fm Page 794 Friday, February 13, 2004 4:56 PM

Buttons, Events, and Other Swing Basics 795

Pitfall

and somehow buttonEar gets plugged in for the parameter bla and this invocation of
actionPerformed is executed. But, all this is done for you. All you do is define the
method actionPerformed and register buttonEar as a listener for endButton.

Note that the method actionPerformed must have a parameter of type Action-
Event, even if your definition of actionPerformed does not use this parameter. This is
because the invocations of actionPerformed were already programmed for you and so
must allow the possibility of using the ActionEvent parameter e. As you will see, in
other Swing GUIs the method actionPerformed does often use the event e to deter-
mine which button was clicked. This first example is a special, simple case because
there is only one button. Later in this chapter we will say more about defining the
actionPerformed method in more complicated situations.

CHANGING THE HEADING FOR actionPerformed

When you define the method actionPerformed in an action listener, you are implementing the
method heading for actionPerformed that is specified in the ActionListener interface.
Thus, the header for the method actionPerformed is determined for you, and you cannot
change the heading. It must have exactly one parameter, and that parameter must be of type
ActionEvent, as in the following:

 public void actionPerformed(ActionEvent e)

If you change the type of the parameter or if you add (or subtract) a parameter, you will not have
given a correct definition of an action listener.2 The only thing you can change is the name of the
parameter e, since it is just a placeholder. So the following change is acceptable:

public void actionPerformed(ActionEvent theEvent)

Of course, if you make this change, then inside the body of the method actionPerformed, you
will use the identifier theEvent in place of the identifier e.

You also cannot add a throws clause to the method actionPerformed.3 If a checked exception
is thrown in the definition of actionPerformed, then it must be caught in the method action-
Performed. (Recall that a checked exception is one that must be either caught in a catch block
or declared in a throws clause.)

2 Although it would be rather questionable style, you can overload the method named action-
Performed so that you have multiple versions of the method actionPerformed, each with a
different parameter list. But only the version of actionPerformed shown above has anything
to do with making a class into an action listener.
3 If you have not yet covered exception handling (Chapter 9), you can safely ignore this paragraph.

5640_ch16.fm Page 795 Friday, February 13, 2004 4:56 PM

796 Chapter 16 Swing I

Example

Self-Test Exercises

Tip

ENDING A SWING PROGRAM

A GUI program is normally based on a kind of infinite loop. There may not be a Java loop state-
ment in a GUI program, but nonetheless the GUI program need not ever end. The windowing sys-
tem normally stays on the screen until the user indicates that it should go away (for example, by
clicking the "Click to end program." button in Display 16.2). If the user never asks the win-
dowing system to go away, it will never go away. When you write a Swing GUI program, you need
to use System.exit to end the program when the user (or something else) says it is time to end
the program. Unlike the kinds of programs we saw before this chapter, a Swing program will not
end after it has executed all the code in the program. A Swing program does not end until it exe-
cutes a System.exit.4

7. What kind of event is fired when you click a JButton?

8. What method heading must be implemented in a class that implements the ActionLis-
tener interface?

9. Change the program in Display 16.2 so that the window displayed has the title "My First
Window". Hint: Consult the description of constructors in Display 16.3.

A BETTER VERSION OF OUR FIRST SWING GUI

Display 16.4 is a rewriting of the demonstration program in Display 16.2 that includes a few added
features. This new version produces a window that is similar to the one produced by the program
in Display 16.2. However, this new version is done in the style you should follow in writing your
own GUIs. Notice that the window is produced by defining a class (FirstWindow) whose objects
are windows of the kind we want. The window is then displayed by a program (DemoWindow)
that uses the class FirstWindow.

4 As we will see when we discuss more possible arguments for setDefaultCloseOperation,
the System.exit may be in some library code and need not be explicitly given in your code.

System.exit

5640_ch16.fm Page 796 Friday, February 13, 2004 4:56 PM

Buttons, Events, and Other Swing Basics 797

Display 16.4 The Normal Way to Define a JFrame (Part 1 of 2)

1 import javax.swing.JFrame;
2 import javax.swing.JButton;

3 public class FirstWindow extends JFrame
4 {
5 public static final int WIDTH = 300;
6 public static final int HEIGHT = 200;

7 public FirstWindow()
8 {
9 super();

10 setSize(WIDTH, HEIGHT);

11 setTitle("First Window Class");

12 setDefaultCloseOperation(
13 JFrame.DO_NOTHING_ON_CLOSE);

14 JButton endButton = new JButton("Click to end program.");
15 endButton.addActionListener(new EndingListener());
16 getContentPane().add(endButton);
17 }
18 }

1 public class DemoWindow
2 {
3 public static void main(String[] args)
4 {
5 FirstWindow w = new FirstWindow();
6 w.setVisible(true);
7 }
8 }

This is the file FirstWindow.java.

This is the file DemoWindow.java.

The class EndingListener is defined in Display 16.2.

5640_ch16.fm Page 797 Friday, February 13, 2004 4:56 PM

798 Chapter 16 Swing I

Observe that FirstWindow is a derived class of the class JFrame. This is the normal way to
define a windowing interface. The base class JFrame gives some basic window facilities, and
then the derived class adds whatever additional features you want in your window interface.

Note that the constructor in Display 16.4 starts by calling the constructor for the parent class
JFrame with the line

super();

As we noted in Chapter 7, this ensures that any initialization that is normally done for all objects
of type JFrame will in fact be done. If the base class constructor you call has no arguments, then
it will be called automatically, whether you include super(); or not, so we could have omitted
the invocation of super() in Display 16.4. However, if the base class constructor needs an argu-
ment, as it may in some other situations, then you must include a call to the base class construc-
tor, super.

Note that almost all the initializing for the window FirstWindow in Display 16.4 is placed in the
constructor for the class. That is as it should be. The initialization, such as setting the initial win-
dow size, should be part of the class definition and not actions performed by objects of the class
(as they were in Display 16.2). All the initializing methods, such as setSize, setDefault-
CloseOperation, and getContentPane, are inherited from the class JFrame. Because they
are invoked in the constructor for the window, the window itself is the calling object. In other
words, a method invocation such as

setSize(WIDTH, HEIGHT);

is equivalent to

this.setSize(WIDTH, HEIGHT);

Display 16.4 The Normal Way to Define a JFrame (Part 2 of 2)

RESULTING GUI

derived class

constructor

5640_ch16.fm Page 798 Friday, February 13, 2004 4:56 PM

Buttons, Events, and Other Swing Basics 799

Similarly, the method invocations

setDefaultCloseOperation(
 JFrame.DO_NOTHING_ON_CLOSE);

and

getContentPane().add(endButton);

are equivalent to

this.setDefaultCloseOperation(
 JFrame.DO_NOTHING_ON_CLOSE);

and

this.getContentPane().add(endButton);

In the class FirstWindow (Display 16.4) we added the title "First Window Class" to the win-
dow as follows:

setTitle("First Window Class");

You can see where the title is displayed in a JFrame by looking at the picture of the GUI given in
Display 16.4.

One thing we did differently in Display 16.4 from Display 16.2 is to use an anonymous object

endButton.addActionListener(new EndingListener());

instead of the following, which we used in Display 16.2:

EndingListener buttonEar = new EndingListener();
endButton.addActionListener(buttonEar);

In Display 16.2 we were trying to be extra clear and so we used these two steps. However, it makes
more sense to use the anonymous object new EndingListener() since this listener object is
never referenced again and so does not need a name.

The program DemoWindow in Display 16.4 simply displays an object of the class FirstWindow on
the screen.

Almost all of the initialization details for the window in Display 16.4 have been moved to the con-
structor for the class FirstWindow. However, we have placed the invocations of the method
setVisible in the application program that uses the window class FirstWindow. We could
have placed an invocation of setVisible in the constructor for FirstWindow and omitted the
invocation of setVisible from the application program DemoWindow (Display 16.4). If we had
done so, we would have produced the same results when we ran the application program. How-
ever, in normal situations, the application program knows when the window should be displayed,
so it is normal to put the invocation of the method setVisible in the application program. The
programmer writing the class FirstWindow cannot anticipate when a programmer who uses the
window will want to make it visible (or hide it).

setTitle

5640_ch16.fm Page 799 Friday, February 13, 2004 4:56 PM

800 Chapter 16 Swing I

Self-Test Exercises

10. Change the program in Display 16.4 so that the title of the JFrame is not set by the
method setTitle but is instead set by the call to the base class constructor. Hint: Recall
Self-Test Exercise 9.

11. Change the program in Display 16.4 so that there are two ways to end the GUI program:
The program can be ended by either clicking the "Click to end program." button or
clicking the close-window button.

■ LABELS

We have seen how to add a button to a JFrame. If you want to add some text to your
JFrame, use a label instead of a button. A label is an object of the class JLabel. A label
is little more than a line of text. The text for the label is given as an argument to the
JLabel constructor as follows:

JLabel greeting = new JLabel("Hello");

The label greeting can then be added to a JFrame just as a button is added. For exam-
ple, the following might appear in a constructor for a derived class of JFrame:

JLabel greeting = new JLabel("Hello");
getContentPane().add(greeting);

The next Programming Example includes a label in a JFrame GUI.

■ COLOR

You can set the color of a JFrame (or other GUI object). To set the background color of
a JFrame, you use the method setBackground, which all derived classes of JFrame
inherit from JFrame. For example, the following will set the color of the JFrame named
someFrame to blue:

someFrame.setBackground(Color.BLUE);

Alternatively, if you set the color in the constructor for the JFrame, the invocation takes
the form

setBackground(Color.BLUE);

JFrame CLASSES

When we say that a class is a JFrame class we mean the class is a descendent class of the class
JFrame. For example, the class FirstWindow in Display 16.4 is a JFrame class. When we say an
object is a JFrame we mean that it is an instance of a JFrame class.

label
JLabel

setBackground

Color.BLUE

5640_ch16.fm Page 800 Friday, February 13, 2004 4:56 PM

Buttons, Events, and Other Swing Basics 801

which is equivalent to

this.setBackground(Color.BLUE);

Display 16.6 gives an example of a JFrame object (in fact two of them) with color.

What kind of thing is a color when used in a Java Swing class? Like everything else
in Java, a color is an object—in this case, an object that is an instance of the class Color.
The class Color is in the java.awt package. (Note that the package name is java.awt,
not javax.awt.)

In a later chapter you will see how you can define your own colors, but for now we
will use the colors that are already defined for you, such as Color.BLUE, which is a con-
stant named BLUE that is defined in the class Color. The constant, of course, represents
the color blue. If you set the background of a JFrame to Color.BLUE, then the JFrame
will have a blue background. The color constant Color.BLUE and other such constants
are defined in the class Color and their type is Color. The list of color constants that are
defined for you are given in Display 16.5. The next Programming Example has an
example of a constructor with one parameter of type Color.

THE JLabel CLASS

An object of the class JLabel is little more than one line of text that can be added to a JFrame
(or, as we will see, added to certain other objects).

EXAMPLE: (INSIDE A CONSTRUCTOR FOR A DERIVED CLASS OF JFrame):

JLabel myLabel = new JLabel("Hi Mom!");
getContentPane().add(myLabel);

Note that you use getContentPane().add to add a JLabel to a JFrame, as illustrated in the
example above.

color

Color

Display 16.5 The Color Constants

Color.BLACK

Color.BLUE

Color.CYAN

Color.DARK_GRAY

Color.GRAY

Color.GREEN

Color.LIGHT_GRAY

Color.MAGENTA

Color.ORANGE

Color.PINK

Color.RED

Color.WHITE

Color.YELLOW

The class Color is in the java.awt package.

5640_ch16.fm Page 801 Friday, February 13, 2004 4:56 PM

802 Chapter 16 Swing I

Example

A GUI WITH A LABEL AND COLOR

Display 16.6 shows a class for GUIs with a label and a background color. We have already dis-
cussed the use of color for this window. The label is used to display the text string "Close-
window button works.". The label is created as follows:

JLabel aLabel = new JLabel("Close-window button works.");

The label is added to the content pane in the way we described in the subsection entitled
“Labels,” which is the same as the way a button is added, but in this example we have given the
content pane a name with the following:

Container contentPane = getContentPane();

Display 16.6 A JFrame with Color (Part 1 of 2)

1 import javax.swing.JFrame;
2 import javax.swing.JLabel;
3 import java.awt.Color;
4 import java.awt.Container;
5
6 public class ColoredWindow extends JFrame
7 {
8 public static final int WIDTH = 300;
9 public static final int HEIGHT = 200;

10 public ColoredWindow(Color theColor)
11 {
12 super("No Charge for Color");
13 setSize(WIDTH, HEIGHT);
14 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

15 Container contentPane = getContentPane();

16 contentPane.setBackground(theColor);

17 JLabel aLabel = new JLabel("Close-window button works.");
18 contentPane.add(aLabel);
19 }

20 public ColoredWindow()
21 {
22 this(Color.PINK);
23 }
24 } This is the file ColoredWindow.java.

This is an invocation of the other constructor.

This means the program will end when the
user clicks the close-window button.

The content pane is of type
Container.

5640_ch16.fm Page 802 Friday, February 13, 2004 4:56 PM

Buttons, Events, and Other Swing Basics 803

This gives us a name, contentPane, for the content pane of the JFrame windowing GUI we are
defining. Thus, an invocation of the method add can be written in the simpler form

contentPane.add(aLabel);

instead of the slightly more complex (and slightly less efficient) expression

getContentPane().add(aLabel);

Display 16.6 A JFrame with Color (Part 2 of 2)

1 import java.awt.Color;

2 public class DemoColoredWindow
3 {
4 public static void main(String[] args)
5 {
6 ColoredWindow w1 = new ColoredWindow();
7 w1.setVisible(true);

8 ColoredWindow w2 = new ColoredWindow(Color.YELLOW);
9 w2.setVisible(true);

10 }
11 }

RESULTING GUI

This is the file DemoColoredWindow.java.

You will need to use your mouse to drag
the top window or you will not see the
bottom window.

Close-window button works.

Close-window button works.

5640_ch16.fm Page 803 Friday, February 13, 2004 4:56 PM

804 Chapter 16 Swing I

Self-Test Exercises

The important thing to note here is that the method getContentPane produces an object of
type Container. We will say a bit more about the class Container later in this chapter. For
now, all you need to know about this class is that it is the type to use for the object returned by
the method getContentPane (that is, for the content pane of the JFrame).

The GUI class ColoredWindow in Display 16.6 programs the close-window button as follows:

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

This way, when the user clicks the close-window button, the program ends. Note that if the pro-
gram has more than one window, as it does in Display 16.6, and the user clicks the close-window
button in any one window of the class ColoredWindow, then the entire program ends and all
windows go away.

Note that we set the title of the JFrame by making it an argument to super rather than an argu-
ment to setTitle. This is another common way to set the title of a JFrame.

If you run the program DemoColoredWindow in Display 16.6, then the two windows will be
placed one on top of the other. To see both windows, you need to use your mouse to move the top
window.

12. How would you modify the class definition in Display 16.6 so that the window produced
by the no-argument constructor is magenta instead of blue?

13. Suppose myFrame is an object of the class JFrame. Give a Java statement that will declare a
variable named contentPane, and set it so that it names the content pane of myFrame.

14. What import statement do you need to be able to use the type Container?

15. Rewrite the following two lines from Display 16.6 so that the label does not have the name
aLabel or any other name. Hint: Use an anonymous object.

JLabel aLabel = new JLabel("Close-window button works.");
contentPane.add(aLabel);

SETTING THE TITLE OF A JFrame

The two most common ways to set the title of a JFrame are to use the method setTitle, as illus-
trated in Display 16.4, or to give the title as an argument to the base class constructor super, as
illustrated in Display 16.6. (This assumes the base class is JFrame, as it always is in this chapter, or
a descendent of the class JFrame with a suitable constructor.)

Container

EXIT_ON_
CLOSE

5640_ch16.fm Page 804 Friday, February 13, 2004 4:56 PM

Containers and Layout Managers 805

Containers and Layout Managers
Don’t put all your eggs in one basket.

Proverb

There are two main ways to create new classes from old classes. One way is to use
inheritance; this is known as the Is-A relationship. For example, an object of the class
ColoredWindow in Display 16.6 is a JFrame because ColoredWindow is a derived class of
the class JFrame. The second way to create a new class from an existing class (or classes)
is to have instance variables of an already existing class type; this is known as composi-
tion or the Has-A relationship. The Swing library has already set things up so you can
easily use composition. The actual code for declaring instance variables is in the Swing
library classes, such as the class JFrame, and you program by adding components to a
JFrame or objects of certain other classes using the add method, which does ultimately
set some instance variable. In this section we discuss adding and arranging components
in a GUI or subpart of a GUI.

Thus far, we have only added one component, either a button or a label, to the con-
tent pane of a JFrame. You can add more than one element to a content pane, but the
add method simply tells which components are added to the content pane; it does not
say how they are arranged, such as side by side or one above the other. To describe how
the components are arranged, you need to use a layout manager.

In this section we will see that there are other classes of objects besides the content
pane of a JFrame that can have components added with the add method and arranged
by a layout manager. All these classes are known as container classes.

■ BORDER LAYOUT MANAGERS

Display 16.7 contains an example of a GUI that uses a layout manager to arrange three
labels in a JFrame. The labels are arranged one below the other on three lines.

A layout manager is added to the content pane of the JFrame class in Display 16.7
with the following line:

contentPane.setLayout(new BorderLayout());

BorderLayout is a layout manager class, so new BorderLayout() produces a new anon-
ymous object of the class BorderLayout. This BorderLayout object is given the task of
arranging components (in this case, labels) that are added to the content pane.

It may help to note that the above invocation of setLayout is equivalent to the fol-
lowing:

BorderLayout manager = new BorderLayout();
contentPane.setLayout(manager);

16.3

layout manager

container class

setLayout

BorderLayout

5640_ch16.fm Page 805 Friday, February 13, 2004 4:56 PM

806 Chapter 16 Swing I

Display 16.7 The BorderLayout Manager (Part 1 of 2)

1 import javax.swing.JFrame;
2 import javax.swing.JLabel;
3 import java.awt.Container;
4 import java.awt.BorderLayout;

5 public class BorderLayoutJFrame extends JFrame
6 {
7 public static final int WIDTH = 500;
8 public static final int HEIGHT = 400;

9 public BorderLayoutJFrame()
10 {
11 super("BorderLayout Demonstration");
12 setSize(WIDTH, HEIGHT);
13 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

14 Container contentPane = getContentPane();
15 contentPane.setLayout(new BorderLayout());

16 JLabel label1 = new JLabel("First label");
17 contentPane.add(label1, BorderLayout.NORTH);

18 JLabel label2 = new JLabel("Second label");
19 contentPane.add(label2, BorderLayout.SOUTH);

20 JLabel label3 = new JLabel("Third label");
21 contentPane.add(label3, BorderLayout.CENTER);
22 }
23 }

1 public class BorderLayoutDemo
2 {
3 public static void main(String[] args)
4 {
5 BorderLayoutJFrame gui = new BorderLayoutJFrame();
6 gui.setVisible(true);
7 }
8 }

This is the file BorderLayoutJFrame.java.

This is the file BorderLayoutDemo.java.

5640_ch16.fm Page 806 Friday, February 13, 2004 4:56 PM

Containers and Layout Managers 807

Note that the method setLayout is invoked not by the JFrame itself, but by the con-
tent pane of the JFrame, which in this case is named contentPane. This is because we
actually add the labels to the content pane and not (directly) to the JFrame. You should
invoke setLayout with the same object that you use to invoke add (and so far that has
always been the content pane of a JFrame).

A BorderLayout manager places labels (or other components) into the five regions
BorderLayout.NORTH, BorderLayout.SOUTH, BorderLayout.EAST, BorderLayout.WEST,
and BorderLayout.CENTER. These five regions are arranged as shown in Display 16.8.
The outside box represents the content pane (or other container to which you will add
things). None of the lines in the diagram will be visible unless you do something to
make them visible. We drew them in to show you where each region is located.

In Display 16.7, we added labels as follows:

JLabel label1 = new JLabel("First label");
contentPane.add(label1, BorderLayout.NORTH);

JLabel label2 = new JLabel("Second label");
contentPane.add(label2, BorderLayout.SOUTH);

JLabel label3 = new JLabel("Third label");
contentPane.add(label3, BorderLayout.CENTER);

Display 16.7 The BorderLayout Manager (Part 2 of 2)

RESULTING GUI

First label

Third label

Second label

5640_ch16.fm Page 807 Friday, February 13, 2004 4:56 PM

808 Chapter 16 Swing I

When you use a BorderLayout manager, you give the location of the component
added as a second argument to the method add, as in the following:

content.add(label1, BorderLayout.NORTH);

The labels (or other components to be added) need not be added in any particular
order, because the second argument completely specifies where the label is placed.

BorderLayout.NORTH, BorderLayout.SOUTH, BorderLayout.EAST, BorderLayout.

WEST, and BorderLayout.CENTER are five string constants defined in the class Border-
Layout. The values of these constants are "North", "South", "East", "West", and "Cen-
ter". Although you can use a quoted string such as "North" as the second argument to
add, it is more consistent with our general style rules to use a defined constant like Bor-
derLayout.NORTH.

You need not use all five regions. For example, in Display 16.7 we did not use the
regions BorderLayout.EAST and BorderLayout.WEST. If some regions are not used, any
extra space is given to the BorderLayout.CENTER region, which is the largest region.

(The space is divided between regions as follows: Regions are allocated space in the
order first north and south, second east and west, and last center. So, in particular, if
there is nothing in the north region, then the east and west regions will extend to the
top of the space.)

From this discussion, it sounds as though you can place only one item in each
region, but later in this chapter, when we discuss panels, you will see that there is a way
to group items so that more than one item can (in effect) be placed in each region.

There are some standard layout managers defined for you in the java.awt package,
and you can also define your own layout managers. However, for most purposes, the
layout managers defined in the standard libraries are all that you need, and we will not
discuss how you can create your own layout manager classes.

Display 16.8 BorderLayout Regions

BorderLayout.NORTH

BorderLayout.CENTER

BorderLayout.
WEST

BorderLayout.SOUTH

BorderLayout.
EAST

5640_ch16.fm Page 808 Friday, February 13, 2004 4:56 PM

Containers and Layout Managers 809

■ FLOW LAYOUT MANAGERS

The FlowLayout manager is the simplest layout manager. It arranges components
one after the other, going from left to right, in the order in which you add them to
the class using the method add. For example, if the class in Display 16.7 had used the
FlowLayout manager instead of the BorderLayout manager, it would have used the
following code:

contentPane.setLayout(new FlowLayout());

JLabel label1 = new JLabel("First label");
contentPane.add(label1);

JLabel label2 = new JLabel("Second label");
contentPane.add(label2);

JLabel label3 = new JLabel("Third label");
contentPane.add(label3);

LAYOUT MANAGERS

The components that you add to a container class are arranged by an object known as a layout
manager. You add a layout manager with the method setLayout, which is a method of every
container class, such as the content pane of a JFrame or an object of any of the other container
classes that we will introduce later in this chapter. If you do not add a layout manager, a default
layout manager will be provided for you.

SYNTAX:

Container_Object.setLayout(new Layout_Manager_Class());

EXAMPLE (WITHIN A CONSTRUCTOR FOR A CLASS CALLED
BorderLayoutJFrame):

public BorderLayoutJFrame()
{
 ...
 Container contentPane = getContentPane();
 contentPane.setLayout(new BorderLayout());

 JLabel label1 = new JLabel("First label");
 contentPane.add(label1, BorderLayout.NORTH);

 JLabel label2 = new JLabel("Second label");
 contentPane.add(label2, BorderLayout.SOUTH);
 ...
 }

5640_ch16.fm Page 809 Friday, February 13, 2004 4:56 PM

810 Chapter 16 Swing I

Note that if we had used the FlowLayout manager, as in the preceding code, then the
add method would have only one argument. With a FlowLayout manager, the items are
displayed in the order they are added, so that labels above would be displayed all on
one line as follows:

First label Second label Third label

The full program is in the files FlowLayoutJFrame.java and FlowLayoutDemo.java on
the accompanying CD. You will see a number of examples of GUIs that use the Flow-
Layout manager class later in this chapter.

■ GRID LAYOUT MANAGERS

A GridLayout manager arranges components in a two-dimensional grid with some
number of rows and columns. With a GridLayout manager, each entry is the same size.
For example, the following says to use a GridLayout manager with aContainer, which
can be a content pane or other container:

aContainer.setLayout(new GridLayout(2, 3));

The two numbers given as arguments to the constructor GridLayout specify the num-
ber of rows and columns. This would produce the following sort of layout:

The lines will not be visible unless you do something special to make them visible.
They are just included here to show you the region boundaries.

When using a GridLayout manager, each component is stretched so that it com-
pletely fills its grid position.

Although you specify a number of rows and columns, the rules for the number of
rows and columns is more complicated than what we have said so far. If the values for
the number of rows and the number of columns are both nonzero, then the number of
columns will be ignored. For example, if the specification is new GridLayout(2, 3),
then some sample sizes are as follows: If you add six items, the grid will be as shown. If
you add seven or eight items, a fourth column is automatically added, and so forth. If
you add fewer than six components, there will be two rows and a reduced number of
columns.

You can specify that the number of columns is to be ignored by setting the number
of columns to zero, which will allow any number of columns. So a specification of (2,
0) is equivalent to (2, 3), and in fact is equivalent to (2, n) for any nonnegative value
of n. Similarly, you can specify that the number of rows is to be ignored by setting the
number of rows to zero, which will allow any number of rows.

extra code on CD

GridLayout

5640_ch16.fm Page 810 Friday, February 13, 2004 4:56 PM

Containers and Layout Managers 811

When using the GridLayout class, the method add has only one argument. The
items are placed in the grid from left to right, first filling the top row, then the second
row, and so forth. You are not allowed to skip any grid position (although you will later
see that you can add something that does not show and so gives the illusion of skipping
a grid position).

A sample use of the GridLayout class is given in Display 16.9.

Note that we have placed a demonstration main method in the class definition in
Display 16.9. Normally, a Swing GUI class is used to create and display a GUI in a
main method (or other method) in some class other than the class for the Swing GUI.
However, it is perfectly legal and sometimes convenient to place a main method in the
GUI class definition so that it is easy to display a sample of the GUI. Note that the
main method that is given in the class itself is written in the same way as a main method
that is in some other class. In particular, you need to construct an object of the class, as
in the following line from the main method in Display 16.9:

GridLayoutJFrame gui = new GridLayoutJFrame(2, 3);

The three layout managers we have discussed are summarized in Display 6.10.

Next we will discuss panels, which will let you realize the full potential of layout
managers.

Display 16.9 The GridLayout Manager (Part 1 of 2)

1 import javax.swing.JFrame;
2 import javax.swing.JLabel;
3 import java.awt.Container;
4 import java.awt.GridLayout;

5 public class GridLayoutJFrame extends JFrame
6 {
7 public static final int WIDTH = 500;
8 public static final int HEIGHT = 400;

9 public static void main(String[] args)
10 {
11 GridLayoutJFrame gui = new GridLayoutJFrame(2, 3);
12 gui.setVisible(true);
13 }

14 public GridLayoutJFrame(int rows, int columns)
15 {
16 super();
17 setSize(WIDTH, HEIGHT);
18 setTitle("GridLayout Demonstration");
19 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

5640_ch16.fm Page 811 Friday, February 13, 2004 4:56 PM

812 Chapter 16 Swing I

Display 16.9 The GridLayout Manager (Part 2 of 2)

20 Container contentPane = getContentPane();
21 contentPane.setLayout(new GridLayout(rows, columns));

22 JLabel label1 = new JLabel("First label");
23 contentPane.add(label1);

24 JLabel label2 = new JLabel("Second label");
25 contentPane.add(label2);

26 JLabel label3 = new JLabel("Third label");
27 contentPane.add(label3);

28 JLabel label4 = new JLabel("Fourth label");
29 contentPane.add(label4);

30 JLabel label5 = new JLabel("Fifth label");
31 contentPane.add(label5);
32 }
33 }

RESULTING GUI

First label Second label Third label

Fourth label Fifth label

5640_ch16.fm Page 812 Friday, February 13, 2004 4:56 PM

Containers and Layout Managers 813

Self-Test Exercises

16. In Display 16.7, would it be legal to replace

JLabel label1 = new JLabel("First label");
contentPane.add(label1, BorderLayout.NORTH);

JLabel label2 = new JLabel("Second label");
contentPane.add(label2, BorderLayout.SOUTH);

JLabel label3 = new JLabel("Third label");
contentPane.add(label3, BorderLayout.CENTER);

with the following?

JLabel aLabel = new JLabel("First label");
contentPane.add(aLabel, BorderLayout.NORTH);

aLabel = new JLabel("Second label");
contentPane.add(aLabel, BorderLayout.SOUTH);

aLabel = new JLabel("Third label");
contentPane.add(aLabel, BorderLayout.CENTER);

In other words, can we reuse the variable aLabel or must each label have its own variable
name?

Display 16.10 Some Layout Managers

LAYOUT MANAGER DESCRIPTION

These layout manager classes are in the java.awt package.

FlowLayout Displays components from left to right in the order in
which they are added to the container.

BorderLayout Displays the components in five areas: north, south, east,
west, and center. You specify the area a component goes
into in a second argument of the add method.

GridLayout Lays out components in a grid, with each component
stretched to fill its box in the grid.

5640_ch16.fm Page 813 Friday, February 13, 2004 4:56 PM

814 Chapter 16 Swing I

17. How would you modify the class definition in Display 16.7 so that the three labels are dis-
played as follows?

First label
Second label
Third label

(There may be space between each pair of lines.)

18. How would you modify the class definition in Display 16.7 so that the three labels are dis-
played as follows?

First label
 Second label
Third label

(There may be space between each pair of lines.)

19. Suppose you are defining a windowing GUI class in the usual way, as a derived class of the
class JFrame, and suppose that the constructor obtains the content pane as follows:

Container contentPane = getContentPane();

Now suppose you want to specify a layout manager for contentPane so as to produce the
following sort of layout (that is, a one-row layout, typically having three columns):

What should the argument to contentPane.setLayout be?

20. Suppose the situation is as described in exercise 19, except that you want the following sort
of layout (that is, a one-column layout, typically having three rows):

What should the argument to setLayout be?

5640_ch16.fm Page 814 Friday, February 13, 2004 4:56 PM

Containers and Layout Managers 815

Example

■ PANELS

A GUI is often organized in a hierarchical fashion, with window-like containers,
known as panels, inside of other window-like containers. A panel is an object of the
class JPanel, which is a very simple container class that does little more than group
objects. It is one of the simplest container classes, but an extremely useful one. A
JPanel object is analogous to the braces used to combine a number of simpler Java
statements into a single larger Java statement. It groups smaller objects, such as buttons
and labels, into a larger component (the JPanel). You can then put the JPanel object
in the content pane of a JFrame. Thus, one of the main functions of JPanel objects is
to subdivide a JFrame (or other container) into different areas.

 For example, when you use a BorderLayout manager, you can place components in
each of the five locations BorderLayout.NORTH, BorderLayout.SOUTH, BorderLay-
out.EAST, BorderLayout.WEST, and BorderLayout.CENTER. But what if you want to put
two components at the bottom of the screen in the BorderLayout.SOUTH position? To
do this, you would put the two components in a panel and then place the panel in the
BorderLayout.SOUTH position.

You can give different layout managers to the content pane of a JFrame and to each
panel in the JFrame. Since you can add panels to other panels and each panel can have
its own layout manager, this enables you to produce almost any kind of overall layout
of the items in your GUI.

For example, if you want to place two buttons at the bottom of your JFrame GUI,
you might add the following to the constructor of your JFrame GUI:

Container contentPane = getContentPane();
contentPane.setLayout(new BorderLayout());

JPanel buttonPanel = new JPanel();
buttonPanel.setLayout(new FlowLayout());

JButton firstButton = new JButton("One");
buttonPanel.add(firstButton);

JButton secondButton = new JButton("Two");
buttonPanel.add(secondButton);

contentPane.add(buttonPanel, BorderLayout.SOUTH);

The next Programming Example makes use of panels within panels.

A TRICOLOR BUILT WITH PANELS

When first run, the GUI defined in Display 16.11 looks as shown in the first view. The entire back-
ground is light gray and there are three buttons at the bottom of the GUI labeled "Red",

panel

5640_ch16.fm Page 815 Friday, February 13, 2004 4:56 PM

816 Chapter 16 Swing I

"White", and "Blue". If you click any one of the buttons, a vertical stripe with the color written
on the button appears. You can click the buttons in any order. In the last three views in Display
16.11 we show what happens if you click the buttons in left-to-right order.

The red, white, and blue stripes are the JPanels named redPanel, whitePanel, and
bluePanel. At first the panels are not visible because they are all light gray, so no borders are
visible. When you click a button, the corresponding panel changes color and so is clearly visible.

Be sure to notice that you add things to a JFrame and to a JPanel in slightly different ways.
With a JFrame, you first get the content pane with getContentPane, and then you use the
method add with the content pane. With a JPanel, you use the method add directly with the
JPanel object. There is no content pane to worry about with a JPanel.

Notice how the action listeners are set up. Each button registers the this parameter as a listener,
as in the following line:

 redButton.addActionListener(this);

Because this line appears inside of the constructor for the class PanelDemo, the this parameter
refers to PanelDemo, which is the entire GUI. Thus, the entire JFrame (the entire GUI) is the lis-
tener, not the JPanel. So when you click one of the buttons, it is the actionPerformed method
in PanelDemo that is executed.

When a button is clicked, the actionPerformed method is invoked with the action event fired
as the argument to actionPerformed. The method actionPerformed recovers the string
written on the button with the following line:

String buttonString = e.getActionCommand();

The method actionPerformed then uses a multiway if-else statement to determine if but-
tonString is "Red", "White", or "Blue" and changes the color of the corresponding panel
accordingly. It is common for an actionPerformed method to be based on such a multiway
if-else statement, although we will see another approach in the subsection entitled “Listeners
As Inner Classes <” later in this chapter.

Display 16.11 also introduces one other small, but new technique. In addition to giving colors to
the panels and the content pane, we also gave each button a color. We did this with the method
setBackground, using basically the same technique that we used in previous examples. You
can give a button or almost any other item a color using setBackground.

■ THE Container CLASS

The class called Container is in the java.awt package. Any descendent class of the class
Container can have components added to it (or, more precisely, can have components
added to objects of the class). The class JFrame is a descendent class of the class Con-
tainer, so any descendent class of the class JFrame can serve as a container to hold
labels, buttons, panels, or other components.

Container

5640_ch16.fm Page 816 Friday, February 13, 2004 4:56 PM

Containers and Layout Managers 817

Display 16.11 Using Panels (Part 1 of 3)

1 import javax.swing.JFrame;
2 import javax.swing.JPanel;
3 import java.awt.Container;
4 import java.awt.BorderLayout;
5 import java.awt.GridLayout;
6 import java.awt.FlowLayout;
7 import java.awt.Color;
8 import javax.swing.JButton;
9 import java.awt.event.ActionListener;

10 import java.awt.event.ActionEvent;

11 public class PanelDemo extends JFrame implements ActionListener
12 {
13 public static final int WIDTH = 300;
14 public static final int HEIGHT = 200;

15 private JPanel redPanel;
16 private JPanel whitePanel;
17 private JPanel bluePanel;

18 public static void main(String[] args)
19 {
20 PanelDemo gui = new PanelDemo();
21 gui.setVisible(true);
22 }

23 public PanelDemo()
24 {
25 super("Panel Demonstration");
26 setSize(WIDTH, HEIGHT);
27 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
28 Container contentPane = getContentPane();
29 contentPane.setLayout(new BorderLayout());

30 JPanel biggerPanel = new JPanel();
31 biggerPanel.setLayout(new GridLayout(1, 3));

32 redPanel = new JPanel();
33 redPanel.setBackground(Color.LIGHT_GRAY);
34 biggerPanel.add(redPanel);

35 whitePanel = new JPanel();
36 whitePanel.setBackground(Color.LIGHT_GRAY);
37 biggerPanel.add(whitePanel);

We made these panels instance variables because
we want to refer to them in both the constructor
and the method actionPerformed.

In addition to being the GUI class, the class
PanelDemo is also the action listener class. An
object of the class PanelDemo is the action
listener for the buttons in that object.

5640_ch16.fm Page 817 Friday, February 13, 2004 4:56 PM

818 Chapter 16 Swing I

Display 16.11 Using Panels (Part 2 of 3)

38 bluePanel = new JPanel();
39 bluePanel.setBackground(Color.LIGHT_GRAY);
40 biggerPanel.add(bluePanel);

41 contentPane.add(biggerPanel, BorderLayout.CENTER);

42 JPanel buttonPanel = new JPanel();
43 buttonPanel.setBackground(Color.LIGHT_GRAY);
44 buttonPanel.setLayout(new FlowLayout());

45 JButton redButton = new JButton("Red");
46 redButton.setBackground(Color.RED);
47 redButton.addActionListener(this);
48 buttonPanel.add(redButton);

49 JButton whiteButton = new JButton("White");
50 whiteButton.setBackground(Color.WHITE);
51 whiteButton.addActionListener(this);
52 buttonPanel.add(whiteButton);

53 JButton blueButton = new JButton("Blue");
54 blueButton.setBackground(Color.BLUE);
55 blueButton.addActionListener(this);
56 buttonPanel.add(blueButton);

57 contentPane.add(buttonPanel, BorderLayout.SOUTH);
58 }

59 public void actionPerformed(ActionEvent e)
60 {
61 String buttonString = e.getActionCommand();

62 if (buttonString.equals("Red"))
63 redPanel.setBackground(Color.RED);
64 else if (buttonString.equals("White"))
65 whitePanel.setBackground(Color.WHITE);
66 else if (buttonString.equals("Blue"))
67 bluePanel.setBackground(Color.BLUE);
68 else
69 System.out.println("Unexpected error.");
70 }
71 }

An object of the class PanelDemo
is the action listener for the buttons
in that object.

5640_ch16.fm Page 818 Friday, February 13, 2004 4:56 PM

Containers and Layout Managers 819

Display 16.11 Using Panels (Part 3 of 3)

RESULTING GUI (When first run)

RESULTING GUI (After clicking Red button)

RESULTING GUI (After clicking White button)

RESULTING GUI (After clicking Blue button)

5640_ch16.fm Page 819 Friday, February 13, 2004 4:56 PM

820 Chapter 16 Swing I

Similarly, the class JPanel is a descendent of the class Container, and any object of
the class JPanel can serve as a container to hold labels, buttons, other panels, or other
components. Display 16.12 shows a portion of the hierarchy of Swing and AWT
classes. Note that the Container class is in the AWT library and not in the Swing
library. This is not a major issue, but it does mean that the import statement for the
Container class is

import java.awt.Container;

 A container class is any descendent class of the class Container. The class JCompo-
nent serves a similar roll for components. Any descendent class of the class JComponent
is called a JComponent or sometimes simply a component. You can add any JComponent
object to any container class object.

The class JComponent is derived from the class Container, so you can add a JCompo-
nent to another JComponent. Often, this will turn out to be a viable option; occasion-
ally it is something to avoid.5

The classes Component, Frame, and Window shown in Display 16.12 are AWT classes
that some readers may have heard of. We include them for reference value, but we will
have no need for these classes. We will eventually discuss all the other classes shown in
Display 16.12.

When you are dealing with a Swing container class, you have three kinds of objects
to deal with:

1. The container itself, probably some sort of panel or window-like object

2. The components you add to the container, like labels, buttons, and panels

3. A layout manager, which positions the components inside the container

You have seen examples of these three kinds of objects in almost every JFrame class we
have defined. Almost every complete GUI you build, and many subparts of the GUIs
you build, will be made up of these three kinds of objects.

The JPanel class inherits the method add from the class Container, and the method
add can be used to directly add a component to a JPanel. JFrame is a different kind of
container class. The class JFrame is a descendent class of the class Container and so it
inherits the add method from the class Container. However, if you try to use the
method add directly on a JFrame (instead of on the content pane of the JFrame), you
will get a run-time error message. The content pane of a JFrame is also used for other
things that we will not discuss in this book. For what we are doing in this book, the
content pane of a JFrame is just an unavoidable nuisance.

5 In particular, it is legitimate and sometimes useful to add JComponents to a JButton. We do
not have space in this book to develop techniques for doing this effectively, but you may want to
give it a try. You have had enough material to do it.

container class
 component

5640_ch16.fm Page 820 Friday, February 13, 2004 4:56 PM

Containers and Layout Managers 821

AWT

java.awt

Swing

javax.swing

This blue color indicates a class that is not used in this text but is included
here for reference. If you have not heard of any of these classes, you can
safely ignore them. (The class Component does receive very brief treatment
in Chapter 18.)

A line between two boxes means the lower class
is derived from (extends) the higher one.

Display 16.12 Hierarchy of Swing and AWT Classes

Object

JComponent

Window

BorderLayout FlowLayout GridLayout

Container

JFrame

JPanel

JLabel JMenuBar

JMenuItem

JMenu
JButton

JTextField
JTextArea

JTextComponent

Frame

AbstractButton

Component

Concrete Class

Abstract Class

5640_ch16.fm Page 821 Friday, February 13, 2004 4:56 PM

822 Chapter 16 Swing I

Self-Test Exercises

21. When adding components to a JFrame, do you need to use getContentPane? When add-
ing components to a JPanel, do you need to use getContentPane?

22. What standard Java package contains the layout manager classes discussed in this chapter?

23. Is an object of the class JPanel a container class? Is it a component class?

24. With a GridLayout manager, you cannot leave any grid element empty, but you can do
something that will make a grid element look empty to the user. What can you do?

WHEN TO USE A CONTENT PANE

You add items to a JFrame by using a combination of getContentPane and add, as in
the following:

Container contentPane = getContentPane();
 ...
JButton aButton = new JButton("Click me");
 ...
contentPane.add(aButton);

However, with a JPanel, you do not use getContentPane, but instead use the method add
directly with the JPanel object, as illustrated below:

JPanel buttonPanel = new JPanel();
 ...
JButton aButton = new JButton("Click me");
 ...
buttonPanel.add(aButton);

With JFrame objects, you need to use the method getContentPane to get the content pane of
the JFrame object and then use the method add with the content pane as the calling object. With
JApplets, which are discussed in Chapter 17, you need to add things to a content pane in a sim-
ilar way. With all other container classes discussed in this text, you use the method add directly
with an object of the container class and do not use a content pane.

WHY DOES A JFrame HAVE A CONTENT PANE?

Unfortunately, the question does not have an easy answer. It has to do with ways of using a
JFrame object that we will not go into in this book. If it seems to you that there is no intrinsic
need for a content pane, take comfort in the fact that your observation is well taken. For what we
are doing in this book, the JFrame class could have been defined so that it does not have a con-
tent pane. In fact, the precursor class of the class JFrame (in the older AWT library of classes) did
not have a content pane. However, a JFrame object does have a content pane and you must deal
with the content pane or your programs will not work correctly.

5640_ch16.fm Page 822 Friday, February 13, 2004 4:56 PM

Containers and Layout Managers 823

Tip

25. You are used to defining derived classes of the Swing class JFrame. You can also define
derived classes of other Swing classes. Define a derived class of the class JPanel that is
called PinkJPanel. An object of the class PinkJPanel can be used just as we used objects
of the class JPanel, but an object of the class PinkJPanel is pink in color (unless you
explicitly change its color). The class PinkJPanel will have only one constructor, namely
the no-argument constructor. (Hint: This is very easy.)

CODE A GUI’S LOOK AND ACTIONS SEPARATELY

You can divide the task of designing a Swing GUI into two main subtasks: (1) Designing and cod-
ing the appearance of the GUI on the screen; (2) Designing and coding the actions performed in
response to button clicks and other user actions. This dividing of one big task into two simpler
tasks makes the big task easier and less error prone.

For example, consider the program in Display 16.11. Your first version of this program might use
the following definition of the method actionPerformed:

public void actionPerformed(ActionEvent e)
{}

This version of the method actionPerformed does nothing, but your program will run and will
display a window on the screen, just as shown in Display 16.11. If you click any of the buttons,
nothing will happen, but you can use this version of your GUI to adjust details, such as the order
and location of buttons.

After you get the GUI to look the way you want it to look, you can define the action parts of the
GUI, typically the method actionPerformed.

If you include the phrase implements ActionListener at the start of your JFrame definition,
then you must include some definition of the method actionPerformed. A method definition,
such as

public void actionPerformed(ActionEvent e)
{}

which does nothing (or does very little) is called a stub. Using stubs is a good programming
technique in many contexts, not just in Swing programs.

Alternatively, when writing your first version of a Swing GUI like the one in Display 16.11, you could
omit the definition of the method actionPerformed completely, provided you also omit the
phrase implements ActionListener and omit the invocations of addActionListener.

■ THE MODEL-VIEW-CONTROLLER PATTERN ✜

The technique we advocated in the previous Programming Tip is an example of a general
technique known as the Model-View-Controller pattern. Display 16.13 gives a diagram of

stub

Model-View-
Controller

5640_ch16.fm Page 823 Friday, February 13, 2004 4:56 PM

824 Chapter 16 Swing I

Self-Test Exercises

this pattern. The Model part of the pattern performs the heart of the application. The
View part is the output part; it displays a picture of the Model’s state. The Controller is
the input part; it relays commands from the user to the Model. Each of the three inter-
acting parts is realized as an object with responsibility for its own tasks. In a simple task
such as the JFrame in Display 16.11, you can have a single object with different meth-
ods to realize each of the roles Model, View, and Controller.

To simplify the discussion, we have presented the Model-View-Controller pattern as
if the user interacts directly with the Controller. The Controller need not be under the
direct control of the user, but could be controlled by some other software or hardware
component. In a Swing GUI, the View and Controller parts might be separate classes
or separate methods combined into one larger class that displays a single window for all
user interactions.

26. Suppose you omitted the method actionPerformed from the class in Display 16.11 and
made no other changes. Would the class compile? If it compiles, will it run with no error
messages?

27. Suppose you omitted the method actionPerformed and the phrase implements
ActionListener from the class in Display 16.11 and made no other changes. Would the
class compile? If it compiles, will it run with no error messages?

Display 16.13 The Model-View-Controller Pattern

Model

ManipulateNotify

data1
data2

.

.

.

...

update()
...

View

...

...

Controller

5640_ch16.fm Page 824 Friday, February 13, 2004 4:56 PM

Menus and Buttons 825

Example

Menus and Buttons
For hours and location press 1.
For a recorded message describing services press 2.
For instructions on using our website press 3.
To use our automated information system press 4.
To speak to an operator between 8 am and noon Monday
through Thursdays press 7.

Phone answering machine

In this section we describe the basics of Swing menus. Swing menu items (menu
choices) behave essentially the same as Swing buttons. They generate action events that
are handled by action listeners, just as buttons do.

A GUI WITH A MENU

Display 16.14 contains a program that is essentially the same as the GUI in Display 16.11 except that
this GUI uses a menu instead of buttons. This GUI has a menu bar at the top of the window. The
menu bar lists the names of all the pull-down menus. This GUI has only one pull-down menu,
which is named "Add Colors". However, there could be more pull-down menus in the same
menu bar.

The user can pull down a menu by clicking its name in the menu bar. Display 16.14 contains three
pictures of the GUI. The first is what you see when the GUI first appears. In that picture, the menu
name "Add Colors" can be seen in the menu bar, but you cannot see the menu. If you click the
words "Add Colors" with your mouse, the menu drops down, as shown in the second picture of
the GUI. If you click "Red", "White", or "Blue" on the menu, then a vertical strip of the named
color appears in the GUI.

In the next subsection, we go over the details of the program in Display 16.14.

■ MENU BARS, MENUS, AND MENU ITEMS

When adding menus as we did in Display 16.14, you use the three Swing classes
JMenuItem, JMenu, and JMenuBar. Entries on a menu are objects of the class JMenuItem.
These JMenuItems are placed in JMenus, and then the JMenus are typically placed in a
JMenuBar. Let’s look at the details.

A menu is an object of the class JMenu. A choice on a menu is called a menu item
and is an object of the class JMenuItem. A menu item is identified by the string that
labels it, such as "Red", "White", or "Blue" in the menu in Display 16.14. You can add
as many JMenuItems as you wish to a menu. The menu lists the items in the order in

16.4

menu
 menu item

5640_ch16.fm Page 825 Friday, February 13, 2004 4:56 PM

826 Chapter 16 Swing I

Display 16.14 A GUI with a Menu (Part 1 of 3)

1 import javax.swing.JFrame;
2 import javax.swing.JPanel;
3 import java.awt.Container;
4 import java.awt.GridLayout;
5 import java.awt.Color;
6 import javax.swing.JMenu;
7 import javax.swing.JMenuItem;
8 import javax.swing.JMenuBar;
9 import java.awt.event.ActionListener;

10 import java.awt.event.ActionEvent;

11 public class MenuDemo extends JFrame implements ActionListener
12 {
13 public static final int WIDTH = 300;
14 public static final int HEIGHT = 200;

15 private JPanel redPanel;
16 private JPanel whitePanel;
17 private JPanel bluePanel;

18 public static void main(String[] args)
19 {
20 MenuDemo gui = new MenuDemo();
21 gui.setVisible(true);
22 }

23 public MenuDemo()
24 {
25 super("Menu Demonstration");
26 setSize(WIDTH, HEIGHT);
27 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
28 Container contentPane = getContentPane();
29 contentPane.setLayout(new GridLayout(1, 3));

30 redPanel = new JPanel();
31 redPanel.setBackground(Color.LIGHT_GRAY);
32 contentPane.add(redPanel);

33 whitePanel = new JPanel();
34 whitePanel.setBackground(Color.LIGHT_GRAY);
35 contentPane.add(whitePanel);

5640_ch16.fm Page 826 Friday, February 13, 2004 4:56 PM

Menus and Buttons 827

Display 16.14 A GUI with a Menu (Part 2 of 3)

36 bluePanel = new JPanel();
37 bluePanel.setBackground(Color.LIGHT_GRAY);
38 contentPane.add(bluePanel);

39 JMenu colorMenu = new JMenu("Add Colors");

40 JMenuItem redChoice = new JMenuItem("Red");
41 redChoice.addActionListener(this);
42 colorMenu.add(redChoice);

43 JMenuItem whiteChoice = new JMenuItem("White");
44 whiteChoice.addActionListener(this);
45 colorMenu.add(whiteChoice);

46 JMenuItem blueChoice = new JMenuItem("Blue");
47 blueChoice.addActionListener(this);
48 colorMenu.add(blueChoice);

49 JMenuBar bar = new JMenuBar();
50 bar.add(colorMenu);
51 setJMenuBar(bar);
52 }

53 public void actionPerformed(ActionEvent e)
54 {
55 String buttonString = e.getActionCommand();

56 if (buttonString.equals("Red"))
57 redPanel.setBackground(Color.RED);
58 else if (buttonString.equals("White"))
59 whitePanel.setBackground(Color.WHITE);
60 else if (buttonString.equals("Blue"))
61 bluePanel.setBackground(Color.BLUE);
62 else
63 System.out.println("Unexpected error.");
64 }
65 }

The definition of actionPerformed is identical to the definition given
in Display 16.11 for a similar GUI using buttons instead of menu items.

5640_ch16.fm Page 827 Friday, February 13, 2004 4:56 PM

828 Chapter 16 Swing I

Display 16.14 A GUI with a Menu (Part 3 of 3)

RESULTING GUI

RESULTING GUI (after clicking Add Colors in the menu bar)

RESULTING GUI (after choosing Red and White on the menu)

RESULTING GUI (after choosing all the colors on the menu)

5640_ch16.fm Page 828 Friday, February 13, 2004 4:56 PM

Menus and Buttons 829

which they are added. The following code, taken from the constructor in Display
16.14, creates a new JMenu object named colorMenu and then adds a JMenuItem labeled
"Red". Other menu items are added in a similar way.

JMenu colorMenu = new JMenu("Add Colors");

JMenuItem redChoice = new JMenuItem("Red");
redChoice.addActionListener(this);
colorMenu.add(redChoice);

Note that, just as we did for buttons in Display 16.11, in Display 16.14 we have
registered the this parameter as an action listener for each menu item. Defining action
listeners and registering listeners for menu items are done in the exact same way as for
buttons. In fact, the syntax is even the same. If you compare Display 16.14 and Display
16.11, you will see that the definition of the method actionPerformed is the same in
both classes.

You add a JMenuItem to an object of the class JMenu using the method add in exactly
the same way that you add a component, such as a button, to a container object. More-
over, if you look at the preceding code, you will see that you specify a string for a
JMenuItem in the same way that you specify a string to appear on a button.

A menu bar is a container for menus, typically placed near the top of a windowing
interface. You add a menu to a menu bar using the method add in the same way that
you add menu items to a menu. The following code from the constructor in Display
16.14 creates a new menu bar named bar and then adds the menu named colorMenu to
this menu bar:

JMenuBar bar = new JMenuBar();
bar.add(colorMenu);

There are two different ways to add a menu bar to a JFrame. You can use the method
setJMenuBar, as shown in the following code from the constructor in Display 16.14:

setJMenuBar(bar);

This sets an instance variable of type JMenuBar so that it names the menu bar named
bar. Saying it less formally, this adds the menu bar named bar to the JFrame and places
the menu bar at the top of the JFrame.

MENUS

A menu is an object of the class JMenu. A choice on a menu is an object of the class JMenuItem.
Menus are collected together in a menu bar (or menu bars). A menu bar is an object of the class
JMenuBar.

Events and listeners for menu items are handled in exactly the same way as they are for buttons.

listeners

menu bar

5640_ch16.fm Page 829 Friday, February 13, 2004 4:56 PM

830 Chapter 16 Swing I

Alternatively, you can use the add method to add a menu bar to the content pane of a
JFrame (or to any other container). You do so in the same way that you add any other
component, such as a label or a button. An example of using add to add a JMenuBar to the
content pane of a JFrame is given in the file MenuAdd.java on the accompanying CD.

ADDING MENUS TO A JFrame

In the following, we assume that all code is inside a constructor for a (derived class of a) JFrame.
To see the following examples put together to produce a complete GUI, see the constructor in Dis-
play 16.14.

CREATING MENU ITEMS

A menu item is an object of the class JMenuItem. You create a new menu item in the usual way,
as illustrated by the following example. The string in the argument position is the displayed text
for the menu item.

JMenuItem redChoice = new JMenuItem("Red");

ADDING MENU ITEM LISTENERS

Events and listeners for menu items are handled in the exact same way as they are for buttons:
Menu items fire action events that are received by objects of the class ActionListener.

SYNTAX:

JMenu_Item_Name.addActionListener(Action_Listener);

EXAMPLE:

redChoice.addActionListener(this);

CREATING A MENU

A menu is an object of the class JMenu. You create a new menu in the usual way, as illustrated by
the following example. The string argument is the displayed text that identifies the menu.

JMenu colorMenu = new JMenu("Add Colors");

ADDING MENU ITEMS TO A MENU

You use the method add to add menu items to a menu.

SYNTAX:

JMenu_Name.add(JMenu_Item);

EXAMPLE (colorMenu IS AN OBJECT OF THE CLASS JMenu):

colorMenu.add(redChoice);

extra code on CD

5640_ch16.fm Page 830 Friday, February 13, 2004 4:56 PM

Menus and Buttons 831

■ NESTED MENUS ✜

As shown in Display 16.12, the class JMenu is a descendent of the JMenuItem class. So,
every JMenu object is also a JMenuItem object. Thus, a JMenu can be a menu item in
another menu. This means that you can nest menus. For example, the outer menu
might give you a list of menus. You can display one of the menus on that list by click-
ing the name of the desired menu. You can then choose an item from that menu by
using your mouse again. There is nothing new you need to know to create these nested
menus. You simply add menus to menus just as you add other menu items. There is an
example of nested menus in the file NestedMenus.java on the accompanying CD.

CREATING A MENU BAR

A menu bar is an object of the class JMenuBar. You create a new menu bar in the usual way, as
illustrated by the following example:

JMenuBar bar = new JMenuBar();

ADDING A MENU TO A MENU BAR

You add a menu to a menu bar using the method add as follows:

SYNTAX:

JMenu_Bar_Name.add(JMenu_Name);

EXAMPLE (bar IS AN OBJECT OF THE CLASS JMenuBar):

bar.add(colorMenu);

ADDING A MENU BAR TO A FRAME

There are two different ways to add a menu bar to a JFrame. You can use the method add to add
the menu bar to the content pane of the JFrame (or to any other container). Another common
way of adding a menu bar to a JFrame is to use the method setJMenuBar as follows:

SYNTAX:

setJMenuBar(JMenu_Bar_Name);

EXAMPLE:

 setJMenuBar(bar);

extra code on CD

5640_ch16.fm Page 831 Friday, February 13, 2004 4:56 PM

832 Chapter 16 Swing I

■ THE AbstractButton CLASS

As shown in Display 16.12, the classes JButton and JMenuItem are derived classes of
the abstract class named AbstractButton. All of the basic properties and methods of
the classes JButton and JMenuItem are inherited from the class AbstractButton. That is
why objects of the class JButton and objects of the class JMenuItem are so similar. Some
of the methods for the class AbstractButton are listed in Display 16.15. All these
methods are inherited by both the class JButton and the class JMenuItem. (Some of
these methods were inherited by the class AbstractButton from the class JComponent,
so you may sometimes see some of the methods listed as “inherited from JComponent.”)

Display 16.15 Some Methods in the Class AbstractButton (Part 1 of 2)

The abstract class AbstractButton is in the javax.swing package.

All of these methods are inherited by both of the classes JButton and JMenuItem.

public void setBackground(Color theColor)

Sets the background color of this component.

public void addActionListener(ActionListener listener)

Adds an ActionListener.

public void removeActionListener(ActionListener listener)

Removes an ActionListener.

public void setActionCommand(String actionCommand)

Sets the action command.

public String getActionCommand()

Returns the action command for this component.

public void setText(String text)

Makes text the only text on this component.

public String getText()

Returns the text written on the component, such as the text on a button or the string for a menu item.

public void setPreferredSize(Dimension preferredSize)

Sets the preferred size of the button or label. Note that this is only a suggestion to the layout manager. The
layout manager is not required to use the preferred size. The following special case will work for most sim-
ple situations. The int values give the width and height in pixels.

public void setPreferredSize(
 new Dimension(int width, int height))

5640_ch16.fm Page 832 Friday, February 13, 2004 4:56 PM

Menus and Buttons 833

Display 16.15 Some Methods in the Class AbstractButton (Part 2 of 2)

■ THE setActionCommand METHOD

When the user clicks a button or menu item, that fires an action event that normally
goes to one or more action listeners where it becomes an argument to an actionPer-
formed method. This action event includes a String instance variable that is known as
the action command for the button or menu item and that is retrieved with the acces-
sor method getActionCommand. The action event in the event is copied from an
instance variable in the button or menu item object. If you do nothing to change it, the
action command is the string written on the button or the menu item. The method
setActionCommand given in Display 16.15 for the class AbstractButton can be used
with any JButton or JMenuItem to change the action command for that component.

public void setMaximumSize(Dimension maximumSize)

Sets the maximum size of the button or label. Note that this is only a suggestion to the layout manager.
The layout manager is not required to respect this maximum size. The following special case will work for
most simple situations. The int values give the width and height in pixels.

public void setMaximumSize(
 new Dimension(int width, int height))

public void setMinimumSize(Dimension minimumSize)

Sets the minimum size of the button or label. Note that this is only a suggestion to the layout manager. The
layout manager is not required to respect this minimum size.

Although we do not discuss the Dimension class, the following special case is intuitively clear and will
work for most simple situations. The int values give the width and height in pixels.

public void setMinimumSize(
 new Dimension(int width, int height))

THE Dimension CLASS

Objects of the class Dimension are used with buttons, menu items, and other objects to specify a
size. The Dimension class is in the package java.awt. The parameters in the following con-
structor are pixels.

CONSTRUCTOR:

Dimension(int width, int height)

EXAMPLE:

aButton.setPreferredSize(new Dimension(30, 50));

action command

5640_ch16.fm Page 833 Friday, February 13, 2004 4:56 PM

834 Chapter 16 Swing I

Among other things, this will allow you to have different action commands for two
buttons, two menu items, or a button and menu item even though they have the same
string written on them.

The method setActionCommand takes a String argument that becomes the new action
command for the calling button or menu item. For example, consider the following code:

JButton nextButton = new JButton("Next");
nextButton.setActionCommand("Next Button");
JMenuItem chooseNext = new JMenuItem("Next");
chooseNext.setActionCommand("Next Menu Item");

If we had not used setActionCommand in the preceding code, then the button nextBut-
ton and the menu item chooseNext would both have the action command "Next" and
so we would have no way to tell which of the two components nextButton and
chooseNext an action event "Next" came from. However, using the method setAc-
tionCommand, we can give them the different action commands "Next Button" and
"Next Menu Item".

The action command for a JButton or JMenuItem is kept as the value of a private
instance variable for the JButton or JMenuItem. The method setActionCommand is sim-
ply an ordinary mutator method that changes the value of this instance variable.

setActionCommand AND getActionCommand

Every button and every menu item has a string associated with it that is known as the action com-
mand for that button or menu item. When the button or menu item is clicked, it fires an action
event e. The following invocation returns the action command for the button or menu item that
fired e:

e.getActionCommand()

The method actionPerformed typically uses this action command string to decide which but-
ton or menu item was clicked.

The default action command for a button or menu item is the string written on it, but if you want,
you can change the action command with an invocation of the method setActionCommand. For
example, the menu item chooseNext created by the following code will display the string
"Next" when it is a menu choice, but will have the string "Next Menu Item" as its action
command.

EXAMPLE:

JMenuItem chooseNext = new JMenuItem("Next");
chooseNext.setActionCommand("Next Menu Item");

setAction-
Command

5640_ch16.fm Page 834 Friday, February 13, 2004 4:56 PM

Menus and Buttons 835

Self-Test Exercises

An alternate approach to defining action listeners is given in the next subsection.
That technique is, among other things, another way to deal with multiple buttons or
menu items that have the same thing written on them.

■ LISTENERS AS INNER CLASSES ✜

In all of our previous examples, our GUIs had only one action listener object to deal with
all action events from all buttons and menus in the GUI. The opposite extreme also has
much to recommend it. If you have a separate ActionListener class for each button or
menu item, then each button or menu item can have its own unique action listener.
There is then no need for a multiway if-else statement. The listener knows which but-
ton or menu items was clicked because it listens to only one button or menu item.

The approach outlined in the previous paragraph does have one down side: You typ-
ically need to give a lot of definitions of ActionListener classes. Rather than putting
each of these classes in a separate file, it is much cleaner to make them private inner
classes. This has the added advantage of allowing the ActionListener classes to have
access to private instance variables and methods of the outer class.

In Display 16.16 we have redone the GUI in Display 16.14 using the techniques of
this subsection.

28. What type of event is fired when you click a JMenuItem? How does it differ from the type
of event fired when you click a JButton?

29. Write code to create a JButton with "Hello" written on it but with "Bye" as its action
command.

30. Write code to create a JMenuItem with "Hello" as its displayed text (when it is a choice in
a menu) but with "Bye" as its action command.

31. If you want to change the action command for a JButton, you use the method setAc-
tionCommand. What method do you use to change the action command for a JMenuItem?

32. Is the following legal in Java?

JMenu aMenu = new JMenu();
 ...
JMenu aSubMenu = new JMenu();
 ...
aMenu.add(aSubMenu);

33. How many JMenuBar objects can you have in a JFrame?

34. A JFrame has a private instance variable of type JMenuBar. What is the name of the muta-
tor method to change the value of this instance variable?

5640_ch16.fm Page 835 Friday, February 13, 2004 4:56 PM

836 Chapter 16 Swing I

Display 16.16 Listeners as Inner Classes (Part 1 of 2)

 <Import statements are the same as in Display 16.14.>

1 public class InnerListenersDemo extends JFrame
2 {
3 public static final int WIDTH = 300;
4 public static final int HEIGHT = 200;

5 private JPanel redPanel;
6 private JPanel whitePanel;
7 private JPanel bluePanel;

8 private class RedListener implements ActionListener
9 {

10 public void actionPerformed(ActionEvent e)
11 {
12 redPanel.setBackground(Color.RED);
13 }
14 } //End of RedListener inner class

15 private class WhiteListener implements ActionListener
16 {
17 public void actionPerformed(ActionEvent e)
18 {
19 whitePanel.setBackground(Color.WHITE);
20 }
21 } //End of WhiteListener inner class

22 private class BlueListener implements ActionListener
23 {
24 public void actionPerformed(ActionEvent e)
25 {
26 bluePanel.setBackground(Color.BLUE);
27 }
28 } //End of BlueListener inner class

29 public static void main(String[] args)
30 {
31 InnerListenersDemo gui = new InnerListenersDemo();
32 gui.setVisible(true);
33 }

5640_ch16.fm Page 836 Friday, February 13, 2004 4:56 PM

Menus and Buttons 837

Display 16.16 Listeners as Inner Classes (Part 2 of 2)

34 public InnerListenersDemo()
35 {
36 super("Menu Demonstration");
37 setSize(WIDTH, HEIGHT);
38 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
39 Container contentPane = getContentPane();
40 contentPane.setLayout(new GridLayout(1, 3));

41 redPanel = new JPanel();
42 redPanel.setBackground(Color.LIGHT_GRAY);
43 contentPane.add(redPanel);

44 whitePanel = new JPanel();
45 whitePanel.setBackground(Color.LIGHT_GRAY);
46 contentPane.add(whitePanel);

47 bluePanel = new JPanel();
48 bluePanel.setBackground(Color.LIGHT_GRAY);
49 contentPane.add(bluePanel);

50 JMenu colorMenu = new JMenu("Add Colors");

51 JMenuItem redChoice = new JMenuItem("Red");
52 redChoice.addActionListener(new RedListener());
53 colorMenu.add(redChoice);

54 JMenuItem whiteChoice = new JMenuItem("White");
55 whiteChoice.addActionListener(new WhiteListener());
56 colorMenu.add(whiteChoice);

57 JMenuItem blueChoice = new JMenuItem("Blue");
58 blueChoice.addActionListener(new BlueListener());
59 colorMenu.add(blueChoice);

60 JMenuBar bar = new JMenuBar();
61 bar.add(colorMenu);
62 setJMenuBar(bar);
63 }

64 }

The resulting GUI is the same as in Display 16.14.

5640_ch16.fm Page 837 Friday, February 13, 2004 4:56 PM

838 Chapter 16 Swing I

35. Write code to create a new menu item named aChoice that has the label "Exit".

36. Suppose you are defining a class called MenuGUI that is a derived class of the class JFrame.
Write code to add the menu item mItem to the menu m. Then add m to the menu bar mBar,
and then add the menu bar to the JFrame MenuGUI. Assume that this all takes place inside
a constructor for MenuGUI. Also assume that everything has already been constructed with
new, and that all necessary listeners are registered. You just need to do the adding of things.

37. ✜ How can you modify the program in Display 16.16 so that when the Blue menu item is
clicked all three colors are shown? The Red and White choices remain the same. (Remem-
ber the menu items may be clicked in any order, so the Blue menu item can be the first or
second item clicked.)

38. ✜ Rewrite the Swing GUI in Display 16.16 so that there is only one action listener inner
class. The inner class constructor will have two parameters, one for a panel and one for a
color.

Text Fields and Text Areas
Write your answers in the spaces provided.

Common instruction for an examination

You have undoubtedly interacted with windowing systems that provide spaces for you
to enter text information such as your name, address, and credit card number. In this
section, we show you how to add these fields for text input and text output to your
Swing GUIs.

■ TEXT AREAS AND TEXT FIELDS

A text field is an object of the class JTextField and is displayed as a field that allows
the user to enter a single line of text. In Display 16.17 the following creates a text field
named name in which the user will be asked to enter his or her name:

private JTextField name;
 ...
name = new JTextField(NUMBER_OF_CHAR);

In Display 16.17 the variable name is a private instance variable. The creation of the
JTextField in the last of the previous lines takes place inside the class constructor. The
number NUMBER_OF_CHAR that is given as an argument to the JTextField constructor
specifies that the text field will have room for at least NUMBER_OF_CHAR characters to be
visible. The defined constant NUMBER_OF_CHAR is 30, so the text field is guaranteed to
have room for at least 30 characters. You can type any number of characters into a text

16.5

text field
JTextField

5640_ch16.fm Page 838 Friday, February 13, 2004 4:56 PM

Text Fields and Text Areas 839

Display 16.17 A Text Field (Part 1 of 3)

1 import javax.swing.JFrame;
2 import javax.swing.JTextField;
3 import javax.swing.JPanel;
4 import javax.swing.JLabel;
5 import javax.swing.JButton;
6 import java.awt.Container;
7 import java.awt.GridLayout;
8 import java.awt.BorderLayout;
9 import java.awt.FlowLayout;

10 import java.awt.Color;
11 import java.awt.event.ActionListener;
12 import java.awt.event.ActionEvent;

13 public class TextFieldDemo extends JFrame
14 implements ActionListener
15 {
16 public static final int WIDTH = 400;
17 public static final int HEIGHT = 200;
18 public static final int NUMBER_OF_CHAR = 30;

19 private JTextField name;

20 public static void main(String[] args)
21 {
22 TextFieldDemo gui = new TextFieldDemo();
23 gui.setVisible(true);
24 }

25 public TextFieldDemo()
26 {
27 super("Text Field Demo");
28 setSize(WIDTH, HEIGHT);
29 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
30 Container content = getContentPane();
31 content.setLayout(new GridLayout(2, 1));

32 JPanel namePanel = new JPanel();
33 namePanel.setLayout(new BorderLayout());
34 namePanel.setBackground(Color.WHITE);

35 name = new JTextField(NUMBER_OF_CHAR);

5640_ch16.fm Page 839 Friday, February 13, 2004 4:56 PM

840 Chapter 16 Swing I

Display 16.17 A Text Field (Part 2 of 3)

36 namePanel.add(name, BorderLayout.SOUTH);
37 JLabel nameLabel = new JLabel("Enter your name here:");
38 namePanel.add(nameLabel, BorderLayout.CENTER);

39 content.add(namePanel);

40 JPanel buttonPanel = new JPanel();
41 buttonPanel.setLayout(new FlowLayout());
42 buttonPanel.setBackground(Color.PINK);
43 JButton actionButton = new JButton("Click me");
44 actionButton.addActionListener(this);
45 buttonPanel.add(actionButton);

46 JButton clearButton = new JButton("Clear");
47 clearButton.addActionListener(this);
48 buttonPanel.add(clearButton);

49 content.add(buttonPanel);
50 }

51 public void actionPerformed(ActionEvent e)
52 {
53 String actionCommand = e.getActionCommand();

54 if (actionCommand.equals("Click me"))
55 name.setText("Hello " + name.getText());
56 else if (actionCommand.equals("Clear"))
57 name.setText("");
58 else
59 name.setText("Unexpected error.");
60 }

61 }

RESULTING GUI (When program is started and a name entered)

This sets the text field equal to the empty
string, which makes it blank.

5640_ch16.fm Page 840 Friday, February 13, 2004 4:56 PM

Text Fields and Text Areas 841

field but only a limited number will be visible; in this case, you know that at least 30
characters will be visible.

A Swing GUI can read the text in a text field and so receive text input, and if that is
desired, can produce output by causing text to appear in the text field. The method
getText returns the text written in the text field. For example, the following will set a
variable named inputString to whatever string is in the text field name at the time that
the getText method is invoked:

String inputString = name.getText();

The method getText is an input method, and the method setText is an output
method. The method setText can be used to display a new text string in a text field.
For example, the following will cause the text field name to change the text it displays to
the string "This is some output":

name.setText("This is some output");

The following line from the method actionPerformed in Display 16.17 uses both
getText and setText:

name.setText("Hello " + name.getText());

This line changes the string in the text field name to "Hello " followed by the old string
value in the text field. The net effect is to insert the string "Hello " in front of the
string displayed in the text field.

A text area is an object of the class JTextArea. A text area is the same as a text field
except that it allows multiple lines. Two parameters to the constructor for JTextArea
specify the minimum number of lines and the minimum number of characters per line
that are guaranteed to be visible. You can enter any amount of text in a text area, but
only a limited number of lines and a limited number of characters per line will be visi-
ble. For example, the following creates a JTextArea named theText that will have at
least 5 lines and at least 20 characters per line visible:

JTextArea theText = new JTextArea(5, 20);

Display 16.17 A Text Field (Part 3 of 3)

RESULTING GUI (After clicking the "Click me" button)

text area
JTextArea

5640_ch16.fm Page 841 Friday, February 13, 2004 4:56 PM

842 Chapter 16 Swing I

There is also a constructor with one additional String parameter for the string ini-
tially displayed in the text area. For example:

JTextArea theText = new JTextArea("Enter\ntext here.", 5, 20);

Note that a string value can be multiple lines because it can contain the new-line char-
acter '\n'.

A JTextField has a similar constructor with a String parameter, as in the following
example:

JTextField ioField =
 new JTextField("Enter numbers here.", 30);

If you look at Display 16.12, you will see that both JTextField and JTextArea are
derived classes of the abstract class JTextComponent. Most of the methods for JText-
Field and JTextArea are inherited from JTextComponent and so JTextField and
JTextArea have mostly the same methods with the same meanings except for minor
redefinitions to account for having just one line or multiple lines. Display 16.18
describes some methods in the class JTextComponent. All of these methods are inher-
ited and have the described meaning in both JTextField and JTextArea.

You can set the line-wrapping policy for a JTextArea using the method setLine-
Wrap. The method takes one argument of type boolean. If the argument is true, then at
the end of a line, any additional characters for that line will appear on the following
line of the text area. If the argument is false, the extra characters will be on the same
line and will not be visible. For example, the following sets the line wrap policy for the

getText AND setText

The classes JTextField and JTextArea both contain methods called getText and setText.
The method getText can be used to retrieve the text written in the text field or text area. The
method setText can be used to change the text written in the text field or text area.

SYNTAX:

Name_of_Text_Component.getText() returns the text currently displayed in the text field or
text area.
Name_of_Text_Component.setText(New_String_To_Display);

EXAMPLES:

String inputString = ioComponent.getText();
ioComponent.setText("Hello out there!");

ioComponent may be an instance of either of the classes JTextField or JTextArea.

setLineWrap

5640_ch16.fm Page 842 Friday, February 13, 2004 4:56 PM

Text Fields and Text Areas 843

JTextArea object named theText so that at the end of a line, any additional characters
for that line will appear on the following line:

 theText.setLineWrap(true);

You can specify that a JTextField or JTextArea cannot be written in by the user. To
do so, use the method setEditable, which is a method in both the JTextField and
JTextArea classes. If theText names an object in either of the classes JTextField or
JTextArea, then the following

theText.setEditable(false);

will set theText so that only your GUI program can change the text in the text compo-
nent theText; the user cannot change the text. After this invocation of setEditable, if
the user clicks the mouse in the text component named theText and then types at the
keyboard, the text in the text component will not change.

To reverse things and make theText so that the user can change the text in the text
component, use true in place of false, as follows:

theText.setEditable(true);

If no invocation of setEditable is made, then the default state allows the user to
change the text in the text component.

Display 16.18 Some Methods in the Class JTextComponent

All these methods are inherited by the classes JTextField and JTextArea.

The abstract class JTextComponent is in the package javax.swing.text. The classes JTextField
and JTextArea are in the package javax.swing.

public String getText()

Returns the text that is displayed by this text component.

public boolean isEditable()

Returns true if the user can write in this text component. Returns false if the user is not allowed to write
in this text component.

public void setBackground(Color theColor)

Sets the background color of this text component.

public void setEditable(boolean argument)

If argument is true, then the user is allowed to write in the text component. If argument is false, then
the user is not allowed to write in the text component.

public void setText(String text)

Sets the text that is displayed by this text component to be the specified text.

output-only

setEditable

5640_ch16.fm Page 843 Friday, February 13, 2004 4:56 PM

844 Chapter 16 Swing I

THE CLASSES JTextField AND JTextArea

The classes JTextField and JTextArea can be used to add areas for changeable text to a GUI.
An object of the class JTextField has one line that displays some specified number of charac-
ters. An object of the class JTextArea has a size consisting of a specified number of lines and a
specified number of characters per line. More text can be typed into a JTextField or JText-
Area than is specified in its size, but the extra text may not be visible.

The number of characters per line and the number of lines are a guaranteed minimum. More lines
and especially more characters per line may be visible. (The space per line is actually guaranteed
to be Characters_Per_Line times the space for one uppercase letter M.)

SYNTAX:

JTextField Name_of_Text_Field = new JTextField(Characters_Per_Line);
JTextArea Name_of_Text_Area =
 new JTextArea(Number_of_Lines, Characters_Per_Line);

EXAMPLES:

JTextField name = new JTextField(30);
JTextArea someText = new JTextArea(10, 30);

There are also constructors that take an additional String argument that specifies an initial
string to display in the text component.

SYNTAX:

JTextField Name_of_Text_Field =
 new JTextField(Initial_String, Characters_Per_Line);
JTextArea Name_of_Text_Area =
 new JTextArea(Initial_String, Number_of_Lines, Characters_Per_Line);

EXAMPLES:

JTextField name = new JTextField("Enter name here.", 30);
JTextArea someText =
 new JTextArea("Enter story here.\nClick button.", 10, 30);

NUMBER OF CHARACTERS PER LINE

The number of characters per line (given as an argument to constructors for JTextField or
JTextArea) is not the number of just any characters. The number gives the number of em spaces
in the line. An em space is the space needed to hold one uppercase letter M, which is the widest
letter in the alphabet. So a line that is specified to hold 20 characters will always be able to hold at
least 20 characters and will almost always hold more than 20 characters.

5640_ch16.fm Page 844 Friday, February 13, 2004 4:56 PM

Text Fields and Text Areas 845

Tip

Self-Test Exercises

Tip

LABELING A TEXT FIELD

Sometimes you want to label a text field. For example, suppose the GUI asks for a name and a
credit card number and expects the user to enter these in two text fields. In this case, the GUI
needs to label the two text fields so that the user knows in which field to type the name and in
which field to type the credit card number. You can use an object of the class JLabel to label a
text field or any other component in a Swing GUI. Simply place the label and text field in a
JPanel and treat the JPanel as a single component. For example, we did this with the text field
name in Display 16.17.

39. What is the difference between an object of the class JTextArea and an object of the class
JTextField?

40. What would happen if when running the GUI in Display 16.17 you were to enter your
name and click the "Click me" button three times?

41. Rewrite the program in Display 16.17 so that it uses a text area in place of a text field.
Change the label "Enter your name here:" to "Enter your story here:". When
the user clicks the "Click me" button, your GUI should change the string displayed in the
text area to "Your story is " + lineCount + " lines long.". The variable
lineCount is a variable of type int that your program sets equal to the number of lines
currently displayed in the text area. Use a BorderLayout manager for the content pane,
and place your text area in the region BorderLayout.CENTER so that there is room for it.
You can assume the user enters at least one line before clicking the "Click me" button.
The last line in the text area will have no '\n' and so you may need to add one if you are
counting the number of occurrences of '\n'. Blank lines are counted.

INPUTTING AND OUTPUTTING NUMBERS

Just as was true for text input with BufferedReader and JOptionPane, when you want to
input numbers using any Swing GUI, your GUI must convert input text to numbers. For example,
when you input the number 42 in a JTextField, your program will receive the string "42", not

SCROLL BARS

Scroll bars for text areas and text fields are discussed in Chapter 18. They are a nice touch, but
until you reach Chapter 18, your GUI programs will work fine without them.

5640_ch16.fm Page 845 Friday, February 13, 2004 4:56 PM

846 Chapter 16 Swing I

the number 42. Your program must convert the input string value "42" to the integer value 42.
When you want to output numbers using a GUI constructed with Swing, you must convert the
numbers to a string and then output that string. For example, if you want to output the number
40, your program would convert the integer value 40 to the string value "40". With Swing, all
input typed by the user is string input and all displayed output is string output. The techniques
for converting back and forth between strings and numbers were given in Chapter 2.

■ A SWING CALCULATOR

Designing a realistic Swing calculator is Programming Project 1. In this programming
example we will develop a simplified calculator to get you started on that Programming
Project. Display 16.19 contains a GUI for a calculator that keeps a running total of
numbers. The user enters a number in the text field and then clicks either the + or −
button. The number in the text field is then added into or subtracted from a running
total that is kept in the instance variable result, and then the new total, the new value
of result, is given in the text field. If the user clicks the "Reset" button, then the run-
ning total, the value of result, is set to zero. When the GUI is first run, the running
total, the value of result, is set to zero.

Most of the details are similar to things you have already seen, but one new element
is the use of exception handling. If the user enters a number in an incorrect format,
such as placing a comma in a number, then one of the methods throws a
NumberFormatException. If the user enters a number in an incorrect format, such as
2,000 with a comma instead of 2000, the method assumingCorrectNumberFormats
invokes the method stringToDouble with the alleged number string "2,000" as an
argument. Then stringToDouble calls Double.parseDouble, but Double.parseDouble
throws a NumberFormatException because no Java number string can contain a comma.
Since the invocation of Double.parseDouble takes place within an invocation of the
method stringToDouble, stringToDouble in turn throws a NumberFormatException.
The invocation of stringToDouble takes place inside the invocation of assumingCor-
rectNumberFormats, so assumingCorrectNumberFormats throws the NumberFormatEx-
ception that it received from the invocation of stringToDouble. However, the
invocation of assumingCorrectNumberFormats is inside a try block. The exception is
caught in the following catch block. At that point, the JTextField (named ioField) is
set to the error message "Error: Reenter Number.".

Notice that if a NumberFormatException is thrown, the value of the instance variable
result is not changed. A NumberFormatException can be thrown by an invocation of
stringToDouble in either of the following lines of code from the method assumingCor-
rectNumberFormats:

result = result + stringToDouble(ioField.getText());

or

result = result − stringToDouble(ioField.getText());

5640_ch16.fm Page 846 Friday, February 13, 2004 4:56 PM

Text Fields and Text Areas 847

Display 16.19 A Simple Calculator (Part 1 of 4)

1 import javax.swing.JFrame;
2 import javax.swing.JTextField;
3 import javax.swing.JPanel;
4 import javax.swing.JLabel;
5 import javax.swing.JButton;
6 import java.awt.Container;
7 import java.awt.BorderLayout;
8 import java.awt.FlowLayout;
9 import java.awt.Color;

10 import java.awt.event.ActionListener;
11 import java.awt.event.ActionEvent;

12 /**
13 A simplified calculator.
14 The only operations are addition and subtraction.
15 */
16 public class Calculator extends JFrame
17 implements ActionListener
18 {
19 public static final int WIDTH = 400;
20 public static final int HEIGHT = 200;
21 public static final int NUMBER_OF_DIGITS = 30;

22 private JTextField ioField;
23 private double result = 0.0;

24 public static void main(String[] args)
25 {
26 Calculator aCalculator = new Calculator();
27 aCalculator.setVisible(true);
28 }

29 public Calculator()
30 {
31 setTitle("Simplified Calculator");
32 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
33 setSize(WIDTH, HEIGHT);
34 Container contentPane = getContentPane();
35 contentPane.setLayout(new BorderLayout());

36 JPanel textPanel = new JPanel();
37 textPanel.setLayout(new FlowLayout());
38 ioField =
39 new JTextField("Enter numbers here.", NUMBER_OF_DIGITS);
40 ioField.setBackground(Color.WHITE);
41 textPanel.add(ioField);
42 contentPane.add(textPanel, BorderLayout.NORTH);

5640_ch16.fm Page 847 Friday, February 13, 2004 4:56 PM

848 Chapter 16 Swing I

Display 16.19 A Simple Calculator (Part 2 of 4)

43 JPanel buttonPanel = new JPanel();
44 buttonPanel.setBackground(Color.BLUE);
45 buttonPanel.setLayout(new FlowLayout());

46 JButton addButton = new JButton("+");
47 addButton.addActionListener(this);
48 buttonPanel.add(addButton);
49 JButton subtractButton = new JButton("−");
50 subtractButton.addActionListener(this);
51 buttonPanel.add(subtractButton);
52 JButton resetButton = new JButton("Reset");
53 resetButton.addActionListener(this);
54 buttonPanel.add(resetButton);

55 contentPane.add(buttonPanel, BorderLayout.CENTER);
56 }

57 public void actionPerformed(ActionEvent e)
58 {
59 try
60 {
61 assumingCorrectNumberFormats(e);
62 }
63 catch (NumberFormatException e2)
64 {
65 ioField.setText("Error: Reenter Number.");
66 }
67 }

68 //Throws NumberFormatException.
69 public void assumingCorrectNumberFormats(ActionEvent e)
70 {
71 String actionCommand = e.getActionCommand();

72 if (actionCommand.equals("+"))
73 {
74 result = result + stringToDouble(ioField.getText());
75 ioField.setText(Double.toString(result));
76 }
77 else if (actionCommand.equals("−"))
78 {
79 result = result − stringToDouble(ioField.getText());
80 ioField.setText(Double.toString(result));

A NumberFormatException does not need to be declared or
caught in a catch block.

5640_ch16.fm Page 848 Friday, February 13, 2004 4:56 PM

Text Fields and Text Areas 849

Display 16.19 A Simple Calculator (Part 3 of 4)

81 }
82 else if (actionCommand.equals("Reset"))
83 {
84 result = 0.0;
85 ioField.setText("0.0");
86 }
87 else
88 ioField.setText("Unexpected error.");
89 }

90 //Throws NumberFormatException.
91 private static double stringToDouble(String stringObject)
92 {
93 return Double.parseDouble(stringObject.trim());
94 }

95 }

RESULTING GUI (When started)

RESULTING GUI (After entering 2,000)

+ -

+ -

5640_ch16.fm Page 849 Friday, February 13, 2004 4:56 PM

850 Chapter 16 Swing I

Display 16.19 A Simple Calculator (Part 4 of 4)

RESULTING GUI (After clicking +)

RESULTING GUI (After entering 2000 and clicking +)

RESULTING GUI (After entering 42)

RESULTING GUI (After clicking +)

+ -

+ -

+ -

+ -

5640_ch16.fm Page 850 Friday, February 13, 2004 4:56 PM

Text Fields and Text Areas 851

Self-Test Exercises

If the exception is thrown, execution of the method stringToDouble ends immediately
and control passes to the catch block. Thus, control passes to the catch block before
the previous addition or subtraction is performed. So result is unchanged, and the
user can reenter the last number and proceed with the GUI as if that incorrect number
were never entered.

42. In the GUI in Display 16.19, why did we make the text field ioField an instance variable
but did not make instance variables of any of the buttons addButton, subtractButton,
or resetButton?

43. What would happen if the user running the GUI in Display 16.19 were to run the GUI
and simply click the addition button without typing anything into the text field?

44. What would happen if the user running the GUI in Display 16.19 were to type the number
10 into the text field and then click the addition button three times? Explain your answer.

45. Suppose you change the main method in Display 16.19 to the following:

public static void main(String[] args)
{
 Calculator calculator1 = new Calculator();
 calculator1.setVisible(true);

 Calculator calculator2 = new Calculator();
 calculator2.setVisible(true);
}

This will cause two calculator windows to be displayed. (If one is on top of the other, you
can use your mouse to move the top one.) If you add numbers in one of these calculators,
will anything change in the other calculator?

46. Suppose you change the main method in Display 16.19 as we described in exercise 45. This
will cause two calculator windows to be displayed. If you click the close-window button in
one of the windows, will one window go away or will both windows go away?

■ Swing GUIs (graphical user interfaces) are programmed using event-driven pro-
gramming. In event-driven programming, a user action, like a button click, gener-

UNCAUGHT EXCEPTIONS

In a Swing program, throwing an uncaught exception does not end the GUI, but it may leave it in
an unpredictable state. It is best to always catch any exception that is thrown even if all that the
catch block does is output an instruction to redo something, such as reentering some input, or
just outputs an error message.

5640_ch16.fm Page 851 Friday, February 13, 2004 4:56 PM

852 Chapter 16 Swing I

ates an event, and that event is automatically passed to an event-handling method
that performs the appropriate action.

■ There are two main techniques for designing a Swing GUI class. You can use inher-
itance to create a derived class of one of the library classes such as JFrame or you can
build a GUI by adding components to a container class. You normally use both of
these techniques when defining a Swing GUI class.

■ A windowing GUI is usually defined as a derived class of the class JFrame.

■ A button is an object of the class JButton. Clicking a button fires an action event
that is handled by an action listener. An action listener is any class that implements
the ActionListener interface.

■ A label is an object of the class JLabel. You can use a label to add text to a GUI.

■ When adding components to an object of a container class, such as adding a button
to a panel or JFrame, you use the method add. The components in a container are
arranged by an object called a layout manager.

■ For an object of the class JFrame, you do not use the method add directly with the
object. Instead, you use the method getContentPane to obtain the content pane of
the JFrame object and you then use the add method with the content pane.

■ A panel is a container object that is used to group components inside of a larger con-
tainer. Panels are objects in the class JPanel.

■ A menu item is a choice on a menu. A menu item is realized in your code as an
object of the class JMenuItem. A menu is an object of the class JMenu. A menu item is
added to a JMenu with the method add. A menu bar is an object of the class
JMenuBar. A menu is added to a JMenuBar with the method add.

■ A JMenuBar can be added to a JFrame with the method setJMenuBar. It can also be
added using the method add, just as any other component can be added.

■ Both buttons and menu items fire action events and so normally have an action lis-
tener registered with them to respond to the events.

ANSWERS TO SELF-TEST EXERCISES

1. The JFrame class.

2. Sizes in Swing are measured in pixels.

3. someWindow.setDefaultCloseOperation(
 JFrame.DO_NOTHING_ON_CLOSE);

4. someWindow.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

5. When you click the minimizing button, the JFrame is reduced to an icon, usually at the
bottom of your monitor screen.

Chapter Summary

5640_ch16.fm Page 852 Friday, February 13, 2004 4:56 PM

Answers to Self-Test Exercises 853

6. someWindow.setVisible(n > 0);

The following also works but is not good style:

if (n > 0)
 someWindow.setVisible(true);
else
 someWindow.setVisible(false);

7. An action event.

8. public void actionPerformed(ActionEvent e)

9. Change

JFrame firstWindow = new JFrame();

to

JFrame firstWindow = new JFrame("My First Window");

Alternatively, you can add the following:

firstWindow.setTitle("My First Window");

10. Delete

setTitle("First Window Class");

and replace

super();

with

super("First Window Class");

11. Change

setDefaultCloseOperation(
 JFrame.DO_NOTHING_ON_CLOSE);

to

setDefaultCloseOperation(
 JFrame.EXIT_ON_CLOSE);

12. Change the following line in the no-argument constructor in Display 16.6 from

this(Color.WHITE);

to

this(Color.MAGENTA);

5640_ch16.fm Page 853 Friday, February 13, 2004 4:56 PM

854 Chapter 16 Swing I

13. Container contentPane = myFrame.getContentPane();

14. import java.awt.Container;

15. contentPane.add(new JLabel("Close-window button works."));

16. Yes, it is legal. It is okay to reuse a variable name such as aLabel.

17. You need to change the add statements, as in the following rewritten section of code:

JLabel label1 = new JLabel("First label");
contentPane.add(label1, BorderLayout.NORTH);

JLabel label2 = new JLabel("Second label");
contentPane.add(label2, BorderLayout.CENTER);

JLabel label3 = new JLabel("Third label");
contentPane.add(label3, BorderLayout.SOUTH);

18. You need to change the add statements, as in the following rewritten section of code:

JLabel label1 = new JLabel("First label");
contentPane.add(label1, BorderLayout.NORTH);

JLabel label2 = new JLabel("Second label");
contentPane.add(label2, BorderLayout.EAST);

JLabel label3 = new JLabel("Third label");
contentPane.add(label3, BorderLayout.SOUTH);

19. The argument should be new GridLayout(1, 3). So, the entire method invocation is

contentPane.setLayout(new GridLayout(1, 3));

Alternatively, you could use new GridLayout(1, 0). It is also possible to do something
similar with a BorderLayout manager or a FlowLayout manager, but a GridLayout
manager will work nicer here.

20. The argument should be new GridLayout(0, 1). So, the entire method invocation is

contentPane.setLayout(new GridLayout(0, 1));

Alternatively, you could use new GridLayout(3, 1), if you know there will be at most
three components added, but if more than three components are added, then a second
column will be added. It is also possible to do something similar with a BorderLayout
manager, but a GridLayout manager will work nicer here.

21. You need to use getContentPane when adding components to a JFrame. You do not use
getContentPane when adding components to a JPanel.

22. java.awt

5640_ch16.fm Page 854 Friday, February 13, 2004 4:56 PM

Answers to Self-Test Exercises 855

23. An object of the class JPanel is both a container class and a component class.

24. To make it look as though you have an empty grid element, add an empty panel to the grid
element.

25. import javax.swing.JPanel;
import java.awt.Color;

public class PinkJPanel extends JPanel
{
 public PinkJPanel()
 {
 setBackground(Color.PINK);
 }
}

The class PinkJPanel is on the CD that accompanies this text.

26. It will not compile, but will give a compiler error message saying that actionPerformed is
not defined (since it claims to implement the ActionListener interface).

27. It will not compile, but will give compiler error messages saying that, in effect, the invoca-
tions of addActionListener such as

redButton.addActionListener(this);

have arguments of an incorrect type.

28. Clicking a JMenuItem fires an action event (that is, an object of the class ActionEvent).
This is the same as with a JButton.

29. JButton b = new JButton("Hello");
b.setActionCommand("Bye");

30. JMenuItem m = new JMenuItem("Hello");
m.setActionCommand("Bye");

31. To change the action command for a JMenuItem, you use the method setActionCom-
mand, just as you would for a JButton.

32. Yes, it is legal.

33. As many as you want. Only one can be added with the method setJMenuBar, but any
number of others can be added to the content pane using the add method.

34. setJMenuBar

35. JMenuItem aChoice = new JMenuItem("Exit");

36. m.add(mItem);
mBar.add(m);

extra code on CD

5640_ch16.fm Page 855 Friday, February 13, 2004 4:56 PM

856 Chapter 16 Swing I

setJMenuBar(mBar);

You could use the following instead of using setJMenuBar:

getContentPane().add(mBar);

This will all take place inside a constructor named MenuGUI.

37. Register all three types of listeners with blueChoice, as follows:

blueChoice.addActionListener(new RedListener());
blueChoice.addActionListener(new WhiteListener());
blueChoice.addActionListener(new BlueListener());

38. Replace the three inner classes with the following inner class:

private class ColorListener implements ActionListener
{
 private JPanel thePanel;
 private Color theColor;

 public ColorListener(Color c, JPanel p)
 {
 theColor = c;
 thePanel = p;
 }

 public void actionPerformed(ActionEvent e)
 {
 thePanel.setBackground(theColor);
 }
} //End of ColorListener inner class

Replace

redChoice.addActionListener(new RedListener());

with

redChoice.addActionListener(
 new ColorListener(Color.RED, redPanel));

Also make similar changes to the menu items whiteChoice and blueChoice, with the
obvious changes to colors and panels.

This is not really preferable to what we did in Display 16.16, but it is a good exercise. The
complete program done this way is on the accompanying CD in the file named
InnerListenersDemo2.java.

39. A JTextField object displays only a single line. A JTextArea object can display more
than one line of text.

extra code on CD

5640_ch16.fm Page 856 Friday, February 13, 2004 4:56 PM

Answers to Self-Test Exercises 857

40. The contents of the text field would change to "Hello Hello Hello " followed by your
name.

41. This program is on the CD that accompanies this text.

import javax.swing.JFrame;
import javax.swing.JTextArea;
import javax.swing.JPanel;
import javax.swing.JLabel;
import javax.swing.JButton;
import java.awt.Container;
import java.awt.GridLayout;
import java.awt.BorderLayout;
import java.awt.FlowLayout;
import java.awt.Color;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;

public class TextAreaDemo extends JFrame
 implements ActionListener
{
 public static final int WIDTH = 400;
 public static final int HEIGHT = 200;
 public static final int NUMBER_OF_LINES = 10;
 public static final int NUMBER_OF_CHAR = 30;

 private JTextArea story;

 public static void main(String[] args)
 {
 TextAreaDemo gui = new TextAreaDemo();
 gui.setVisible(true);
 }

 public TextAreaDemo()
 {
 setTitle("Text Area Demo");
 setSize(WIDTH, HEIGHT);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container content = getContentPane();
 content.setLayout(new GridLayout(2, 1));
 JPanel storyPanel = new JPanel();
 storyPanel.setLayout(new BorderLayout());
 storyPanel.setBackground(Color.WHITE);

 story = new JTextArea(NUMBER_OF_LINES, NUMBER_OF_CHAR);

extra code on CD

5640_ch16.fm Page 857 Friday, February 13, 2004 4:56 PM

858 Chapter 16 Swing I

 storyPanel.add(story, BorderLayout.CENTER);
 JLabel storyLabel = new JLabel("Enter your story here:");
 storyPanel.add(storyLabel, BorderLayout.NORTH);

 content.add(storyPanel);

 JPanel buttonPanel = new JPanel();
 buttonPanel.setLayout(new FlowLayout());
 buttonPanel.setBackground(Color.PINK);
 JButton actionButton = new JButton("Click me");
 actionButton.addActionListener(this);
 buttonPanel.add(actionButton);

 JButton clearButton = new JButton("Clear");
 clearButton.addActionListener(this);
 buttonPanel.add(clearButton);

 content.add(buttonPanel);
 }

 public void actionPerformed(ActionEvent e)
 {
 String actionCommand = e.getActionCommand();

 if (actionCommand.equals("Click me"))
 {
 int lineCount = getLineCount();
 story.setText("Your story is "
 + lineCount + " lines long.");
 }
 else if (actionCommand.equals("Clear"))
 story.setText("");
 else
 story.setText("Unexpected error.");
 }

 private int getLineCount()
 {
 String storyString = story.getText();
 int count = 0;

 for (int i = 0; i < storyString.length(); i++)
 if (storyString.charAt(i) == '\n')

5640_ch16.fm Page 858 Friday, February 13, 2004 4:56 PM

Answers to Self-Test Exercises 859

 count++;

 return count + 1;//The last line has no '\n'.
 }
}

42. We made the text field an instance variable because we needed to refer to it in the defini-
tion of the method actionPerformed. On the other hand, the only direct reference we
had to the buttons was in the constructor. So, we need names for the buttons only in the
constructor definition.

43. The GUI would try to add the string "Enter numbers here." as if it were a string for a
number. This will cause a NumberFormatException to be thrown and the string "Error:
Reenter Number." would be displayed in the text field.

44. Every time the user clicks the addition button, the following assignment is executed:

result = result + stringToDouble(ioField.getText());

So, the number in the text field is added to the total as many times as the user clicks the
addition button. But, the value in the text field is the running total, so the running total is
added to itself. Thus, the running total is added to the total as many times as the user clicks
the addition button.

Let’s say that the user starts the GUI, types in 10, and clicks the addition button. That adds
10 to result, so the value of result is then 0 plus 10, which is 10, and 10 is displayed.
Now the user clicks the addition button a second time. That adds 10 to result again, so
the value of result is 10 plus 10, which is 20, and 20 is displayed. Next the user clicks the
addition button a third time. This time, 20 is in the text field, and so it is added to result,
which is also 20. Thus, the value of result is now 40, and 40 is displayed. Note that it is
always the number in the text field that is added in.

45. The two calculator windows are completely independent. Each has its own instance vari-
able result, which has no effect on the other’s instance variable result.

46. If you click the close-window button in either calculator window, the entire program ends
because that causes an invocation of System.exit. There is no invocation of Sys-
tem.exit in Display 16.19, but the following ensures that a System.exit that is in some
library class will be invoked:

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

5640_ch16.fm Page 859 Friday, February 13, 2004 4:56 PM

860 Chapter 16 Swing I

PROGRAMMING PROJECTS

1. Design and code a Swing GUI calculator. You can use Display 16.19 as a starting point,
but your calculator will be more sophisticated. Your calculator will have two text fields that
the user cannot change: One labeled "Result" will contain the result of performing the
operation, and the other labeled "Operand" will be for the user to enter a number to be
added, subtracted, and so forth from the result. The user enters the number for the "Oper-
and" text field by clicking buttons labeled with the digits 0 through 9 and a decimal point,
just as in a real calculator. Allow the operations of addition, subtraction, multiplication,
and division. Use a GridLayout manager to produce a button pad that looks similar to the
keyboard on a real calculator.

When the user clicks a button for an operation: the operation is performed, the "Result"
text field is updated, and the "Operand" text field is cleared. Include a button labeled
"Reset" that resets the "Result" to 0.0. Also include a button labeled "Clear" that
resets the "Operand" text field so it is blank.

Define an exception class named DivisonByZeroException. Have your code throw and
catch a DivisonByZeroException if the user attempts to “divide by zero.” Your code will
catch the DivisonByZeroException and output a suitable message to the "Operand"
text field. The user may then enter a new substitute number in the "Operand" text field.
Since values of type double are, in effect, approximate values, it makes no sense to test for
equality with 0.0. Consider an operand to be “equal to zero” if it is in the range −1.0e−10
to +1.0e−10.

2. (This is Programming Project 5 in Chapter 10, but done with a windowing interface.)
Write a program that has a windowing interface and that gives and takes advice on program
writing. The program starts by writing a piece of advice to the screen and asking the user to
type in a different piece of advice. The program then ends. The next person to run the pro-
gram receives the advice given by the person who last ran the program. The advice is kept in
a text file and the content of the file changes after each run of the program. You can use
your editor to enter the initial piece of advice in the file so that the first person who runs the
program receives some advice. Allow the user to type in advice of any length so that it can
be any number of lines long. The user is told to end his or her advice by pressing the return
key two times. Your program can then test to see that it has reached the end of the input by
checking to see when it reads two consecutive occurrences of the character '\n'. Alterna-
tively, your program can simply test for an empty line marking the end of the file.

3. (This is Programming Project 1 in Chapter 10, but done with a windowing interface.) Write
a program that has a windowing interface and that will search a text file of strings representing
numbers of type int and output the largest and the smallest numbers. The file contains noth-
ing but strings for numbers of type int, one per line. The windowing interface has a text field
for entering the file name and two additional text fields that do not let the user write in them
and that display the two numbers output. Your program should check to see that the named
file exists and is readable, but need not do any other checks on the file.

5640_ch16.fm Page 860 Friday, February 13, 2004 4:56 PM

Programming Projects 861

4. (The Swing part of this project is pretty easy, but to do this programming project you need
to know how to convert numbers from one base to another.) Write a program that converts
integers from base ten (ordinary decimal) notation to base two notation. Use Swing to per-
form input and output via a window interface. The user enters a base ten numeral in one
text field and clicks a button with "Convert" written on it; the equivalent base two
numeral then appears in another text field. Be sure to label the two text fields. Include a
"Clear" button that clears both text fields when clicked. (Hint: Include a private method
that converts the string for a base ten numeral to the string for the equivalent base two
numeral.)

5. (The Swing part of this project is pretty easy, but to do this programming project you need
to know how to convert numbers from one base to another.) Write a program that converts
integers from base two notation to base ten (ordinary decimal) notation. Use Swing to per-
form input and output via a window interface. The user enters a base two numeral in one
text field and clicks a button with "Convert" written on it; the equivalent base ten
numeral then appears in another text field. Be sure to label the two text fields. Include a
"Clear" button that clears both text fields when clicked. (Hint: Include a private method
that converts the string for a base two numeral to an equivalent int value.)

6. (It would help to do Programming Projects 4 and 5 before doing this one.) Write a pro-
gram that converts integers from base two notation to base ten (ordinary decimal) notation
and vice versa. Use Swing to perform input and output via a window interface. There are
two text fields, one for base two numerals and one for base ten numerals. There are three
buttons with the strings "To Base 10", "To Base 2", and "Clear". If the user enters a
base two numeral in the base two text field and clicks the "To Base 10" button, the
equivalent base ten numeral appears in the base ten text field. Similarly, if the user enters a
base ten numeral in the base ten text field and clicks the "To Base 2" button, the equiva-
lent base two numeral appears in the base two text field. Be sure that the text fields are
labeled. If the user clicks the "Clear" button, that clears both text fields.

5640_ch16.fm Page 861 Friday, February 13, 2004 4:56 PM

