

CHAPTER

15

Collections and Iterators

15.1 VECTORS 733

Vector Basics 733

Vector Operations 734

Pitfall: Vector Elements Are of Type

Object 743

Tip: Comparing Vectors and Arrays 745

Vector Iterators 745

Tip: Use

trimToSize to Save Memory

✜ 746

15.2 COLLECTIONS 749

The Collection Framework 749

Pitfall: Optional Operations 762

Tip: Dealing with All Those Exceptions 763

Concrete Collection Classes 764

A Peek at the Map Framework

✜ 767

15.3 ITERATORS 767

The Iterator Concept 767

The

Iterator Interface 768

List Iterators 770

Pitfall:

next Can Return a Reference 772

Tip: Defining Your Own Iterator Classes 773

CHAPTER SUMMARY 775
ANSWERS TO SELF-TEST EXERCISES 775
PROGRAMMING PROJECTS 779

5640_ch15.fm Page 731 Wednesday, February 11, 2004 2:47 PM

15

Collections and Iterators

Science is built up with facts, as a house is with stones.
But, a collection of facts is no more science than a heap
of stones is a house.

Jules Henri Poincaré, Quoted by Bertrand Russell in the preface to

Science and Method

INTRODUCTION

A collection

 is a data structure for holding elements. For example, an array is a
collection. If you read Chapter 14, the linked lists and trees discussed there are
collections. Java has a repertoire of interfaces and classes that give a uniform
treatment of collections.

All the interfaces and classes introduced in this chapter are in the

java.util

 package.

Rather than start with an abstract discussion of collections, we will begin
with one very useful concrete example of a collection class, namely the class

Vector

. If you do not want to cover the collection framework, you can cover
only the material on vectors (Section 15.1). None of this chapter is required
for the rest of this book.

PREREQUISITES

For Section 15.1 on vectors you can get by with only Chapters 1 through 7,
but it would be preferable to have also covered Section 8.1 (polymorphism),
Chapter 9 (exception handling), and Section 13.1 (interfaces). If you have not
covered Chapter 9 on exception handling, then you should interpret any state-
ments about “throwing an exception” as meaning that a run-time error mes-
sage is given. The one subsection entitled “Vector Iterators” is the only
subsection that requires the material on interfaces in Section 13.1 of Chapter
13, but you may omit this subsection without losing continuity. Although
Chapter 8 is not required, it may help to understand some of the code in Sec-
tion 15.1 if you have read Section 8.1 on polymorphism.

Sections 15.2 and 15.3 can be considered one single large topic. These two
sections require Section 15.1, Chapters 1 through 9, and Section 13.1 of Chap-
ter 13, which covers interfaces. The material on inner classes in Chapter 13
(sections 13.2 and 13.3) is not needed except for the last subsection, “Defining
Your Own Iterator Classes,” which requires Section 13.2 (but not 13.3).

None of the material in this chapter is needed for the material on Swing
and GUIs. So, you may skip this chapter and go directly to Chapter 16 if you

collection

5640_ch15.fm Page 732 Wednesday, February 11, 2004 2:47 PM

Vectors 733

prefer to cover Swing GUIs before considering the material of this chapter. Of course,
this also means that you may cover only Section 15.1 on vectors and then go on to
Chapter 16.

Vectors

“Well, I’ll eat it,” said Alice, “and if it makes me grow larger, I
can reach the key; and if it makes me grow smaller, I can creep
under the door; so either way I’ll get into the garden. . . .”

Lewis Carroll,

Alice’s Adventures in Wonderland

Vector

 is a class. When we speak of a vector

 we simply mean an object of the class

Vec-

tor

. A vector can be thought of as being like an array that can grow (and shrink) in
length while your program is running. In Java, you can read in the length of an array
when the program is run, but once your program creates an array of that length, it can-
not change the length of the array. Vectors serve the same purposes as arrays but have
the added advantage of being able to grow and shrink. Vectors also have a number of
useful methods that perform tasks on vectors that would require writing significant
additional code if done with arrays instead of vectors.

It often seems that every silver lining has a cloud, and vectors are no exception to
this rule. Vectors have lots of advantages over arrays, but they do have at least one con-
spicuous disadvantage: The elements in a vector must be objects; they cannot be values
of a primitive type, such as

int

,

double

, or

char

.

■ VECTOR BASICS

Vectors are used in much the same way as arrays, but there are some important differ-
ences. First, any code that uses the class

Vector

 must contain an import statement such
as the following:

import java.util.Vector;

A vector is created and named in the same way as an object of any other class. For
example:

Vector v = new Vector(100);

This makes

v

 the name of a vector that has an

initial

 capacity

 of 100 items. When we
say that a vector has a certain capacity, we mean that it has been allocated memory for
that many items, but if it needs to hold more items, the system will automatically allo-
cate more memory. By carefully choosing the initial capacity of a vector, you can often
make your code more efficient, but this capacity has no effect on how many items the
vector can hold.

15.1

vector

import statement

capacity

5640_ch15.fm Page 733 Wednesday, February 11, 2004 2:47 PM

734 Chapter 15 Collections and Iterators

The capacity of a vector is the number of locations currently allocated for the vector.
The size

 of a vector is the number of elements stored in the vector. The size is always
less than or equal to the capacity and is typically strictly less than the capacity.

The elements of a vector can be any kind of objects, but for simplicity our examples
will usually use objects of type

String

.

■ VECTOR OPERATIONS

Vectors can be used like arrays, but they do not have the array square bracket notation.
If you would use the following for an array of strings

a

,

a[index] = "Hello";

then the analogous statement for a vector

v

 would be

v.set(index, "Hello");

If you would use the following for an array of strings

a

,

String temp = a[index];

then the analogous statement for a vector

v

 would be

String temp = (String)v.get(index);

The type cast

(String)

 is needed because the base type of all vectors is

Object

. This
point is discussed in more detail later in this chapter. The two methods

set

 and

get

give vectors approximately the same functionality that the square brackets give to
arrays. However, you need to be aware of one important point. The method invocation

v.set(index, "Hello");

is

not

 always completely analogous to

a[index] = "Hello";

CREATING A VECTOR

An object of the class

Vector is created and named in the same way as any other object.

EXAMPLES:

Vector vectorObject = new Vector();
Vector anotherVector = new Vector(50);

When a number is given as an argument to the constructor, that number determines the initial
capacity of the vector.

size

no square
brackets

set
get

5640_ch15.fm Page 734 Wednesday, February 11, 2004 2:47 PM

Vectors 735

The method

set

 can replace any existing element, but unlike an array, you cannot use

set

 to put an element at just any index. The method

set

 is used to change elements,
not to set them for the first time. To set an element for the first time, you usually use
the method

add

. The method

add

 adds elements at index position

0

, position

1

, posi-
tion

2

, and so forth in that order. This means that vectors must always be filled in this
order. But your code can then go back and change any individual element, just as it can
in an array.

Vectors check for indices out of bounds. The index used with

set

 must be an integer
greater than or equal to

0

 and strictly less than the current size of the vector. If it is out
of this range, an

ArrayIndexOutOfBoundsException

 is thrown.

Although you can use the

set

 method as if it were a

void

 method, it actually returns
a value of type

Object

. The method

set

 returns the element its argument replaces.

The method

add

 is overloaded. The one-argument version adds an element to the
end of the list of elements in the vector. For example:

v.add("I'm at the end of the vector.");

The two-element version of

add

 allows you to add an element at any vector index
from

0

 through (and including) the size of the vector. For example,

v.add(i, "Hello");

ACCESSING AT AN INDEX

If

v is a vector, its elements can be accessed as follows:

EXAMPLES:

v.set(index, "Hello"); //Sets the element
 //at index to "Hello".
String temp = (String)v.set(index, "Hello"); //Sets element at
 //index and returns the element formerly at index.
String temp2 = (String)v.get(index); //The expression
 //v.get(index) returns the element at position index.

The index must be greater than or equal to 0 and strictly less than the current size of the vector
v. If it is not in this range, an ArrayIndexOutOfBoundsException is thrown.

The method set can be used as a void method, but it actually returns a value of type Object,
namely the value replaced by its argument.

The method invocations v.get(index) and v.set(index, "Hello") always return their val-
ues as values of type Object and so typically need a type cast.

set restrictions

add

add

5640_ch15.fm Page 735 Wednesday, February 11, 2004 2:47 PM

736 Chapter 15 Collections and Iterators

adds the element "Hello" at index i. All elements that were originally at locations i
or higher have their indices increased by one. The size of the vector is thus increased
by one.

You can find out how many elements are stored in the vector by using the method
size. If v is a vector, v.size() returns the size of the vector, which is the number of
elements stored in it. The indices of these elements go from 0 to 1 less than v.size().

These basic vector operations are illustrated in Display 15.1.

With arrays, the square brackets and the instance variable length are the only
tools automatically provided for you. If you want to use arrays for other things, you
must write code to manipulate the arrays. Vectors, on the other hand, come with a
number of powerful methods that can do many of the things you would need to
write code to do with arrays. For example, the class Vector has a method to insert a
new element between two elements in the vector. Most of these methods are
described in Display 15.2.

ADD

The method add is overloaded. Using the one-argument version of add, elements are added to a
vector at index 0, then 1, then 2, and so forth in that order.

EXAMPLES:

v.add("I'm at index zero");
v.add("I'm at index one");
v.add("I'm at index two");

The object v is a vector. The one-argument version of add always adds its argument at location
v.size() and increases the size of the vector by one.

The two-argument version of add allows you to add an element at any location from 0 to the size
of the array. All the elements at indices greater than the index receiving the new element are
moved up one index. So, both the one-argument and two-argument versions of add increase the
size of the vector by one.

EXAMPLES:

v.add(1, "new value at one");
v.add(v.size(), "I'm new at end.");

The object v is the same vector as in the previous examples. If the index used as the first argument
is not in the range 0 to the size of the vector (inclusive), then an ArrayIndexOutOfBoundsEx-
ception is thrown.

size

5640_ch15.fm Page 736 Wednesday, February 11, 2004 2:47 PM

Vectors 737

Notice the type cast.

Display 15.1 A Vector Demonstration (Part 1 of 2)

1 import java.util.Vector;

2 public class VectorDemo
3 {
4 public static void main(String[] args)
5 {
6 Vector poem = new Vector(10);

7 poem.add("A diller,");
8 poem.add("a dollar,");
9 poem.add("a ten o'clock vector scholar.");

10 System.out.println("The vector poem contains:");
11 System.out.println();
12 int index;
13 int vectorSize = poem.size();
14 for (index = 0; index < vectorSize; index++)
15 System.out.println(poem.get(index));
16 System.out.println();

17 String oldElement =
18 (String)poem.set(1, "a dollar fifty,");
19 System.out.println("\"" + oldElement
20 + "\" is now replaced with");
21 System.out.println("\"" + poem.get(1) + "\"");
22 System.out.println();

23 System.out.println("The vector poem now contains:");
24 System.out.println();
25 vectorSize = poem.size();
26 for (index = 0; index < vectorSize; index++)
27 System.out.println(poem.get(index));
28 }

29 }

5640_ch15.fm Page 737 Wednesday, February 11, 2004 2:47 PM

codes737.html

738 Chapter 15 Collections and Iterators

Among other methods in this table are a number of methods for removing elements
from a vector. For example, you can remove the String "Bad String" from the vector
v as follows:

if (v.remove("Bad String"))
 System.out.println("String \"Bad String\" removed.");
else
 System.out.println("\"Bad String\" not in vector.");

Note that the method remove returns true if the argument is removed and false if the
argument was not in the vector.

THE METHOD SIZE

The method size returns the number of elements in a vector.

EXAMPLE:

for (int i = 0; i < v.size(); i++)
 System.out.println(v.get(i));

v is a vector.

Display 15.1 A Vector Demonstration (Part 2 of 2)

SAMPLE DIALOGUE

The vector poem contains:

A diller,
a dollar,
a ten o'clock vector scholar.

"a dollar," is now replaced with
"a dollar fifty,"

The vector poem now contains:

A diller,
a dollar fifty,
a ten o'clock vector scholar.

remove

5640_ch15.fm Page 738 Wednesday, February 11, 2004 2:47 PM

Vectors 739

Display 15.2 Some Methods in the Class Vector (Part 1 of 5)

The Vector class and the Iterator interface are in the java.util package.

All the exception classes mentioned are unchecked exceptions, which means they are not required to be
caught in a catch block or declared in a throws clause. (If you have not yet studied exceptions, you can
consider the exceptions to be run-time error messages.)

NoSuchElementException is in the java.util package, which requires an import statement if your
code mentions the NoSuchElementException class. All the other exception classes mentioned are in
the package java.lang and so do not require any import statement.

CONSTRUCTORS

public Vector(int initialCapacity, int capacityIncrement)

Constructs an empty vector with the specified initial capacity and capacity increment. When the vector
needs to grow, it will add room for capacityIncrement more items.

Throws an IllegalArgumentException if initialCapacity is negative.

public Vector(int initialCapacity)

Creates an empty vector with the specified initial capacity. When the vector needs to increase its capacity,
the capacity doubles.

Throws an IllegalArgumentException if initialCapacity is negative.

public Vector()

Creates an empty vector with an initial capacity of 10. When the vector needs to increase its capacity, the
capacity doubles.

public Vector(Vector v)

Creates a vector that contains all the elements of the vector v in the same order as they have in v. In other
words, the elements have the same index in the vector created as they do in v. This is not quite a true copy
constructor because it does not preserve capacity. The capacity of the created vector will be v.size(),
not v.capacity.

The vector created is only a shallow copy of the vector argument. The vector created contains references to
the elements in v (not references to clones of the elements in v).

Throws a NullPointerException if v is null.

(The parameter type is really Collection not Vector, but a Vector is also a Collection; so you can
safely act as if the parameter type is Vector. We have not yet discussed Collection. It is discussed in
Section 15.2.)

ARRAYLIKE METHODS

public Object set(int index, Object newElement)

Sets the element at the specified index to newElement. The element previously at that position is
returned. If you draw an analogy between the vector and an array a, this is analogous to setting
a[index] to the value newElement. The index must be a value greater than or equal to 0 and strictly
less than the current size of the vector.

Throws an ArrayIndexOutOfBoundsException if the index is not in this range.

5640_ch15.fm Page 739 Wednesday, February 11, 2004 2:47 PM

740 Chapter 15 Collections and Iterators

public Object get(int index)

Returns the element at the specified index. This is analogous to returning a[index] for an array a. The
index must be a value greater than or equal to 0 and less than the current size of the vector.

Throws an ArrayIndexOutOfBoundsException if the index is not in this range.

METHODS TO ADD ELEMENTS

public boolean add(Object newElement)

Adds newElement to the end of the calling vector and increases its size by 1. The capacity of the vector is
increased if that is required. Returns true if the add was successful. This method is often used as if it were
a void method.

public void add(int index, Object newElement)

Inserts newElement as an element in the calling vector at the specified index and increases the size of the
calling vector by 1. Each element in the vector with an index greater than or equal to index is shifted
upward to have an index that is 1 greater than the value it had previously. The index must be a value
greater than or equal to 0 and less than or equal to the size of the vector (before this addition).

Throws an ArrayIndexOutOfBoundsException if the index is not in this range.

Note that you can use this method to add an element after the last current element. The capacity of the
vector is increased if that is required.

METHODS TO REMOVE ELEMENTS

public Object remove(int index)

Deletes the element at the specified index and returns the element deleted. The size of the calling vector is
decreased by 1. The capacity of the calling vector is not changed. Each element in the vector with an index
greater than or equal to index is decreased to have an index that is 1 less than the value it had previously. The
index must be a value greater than or equal to 0 and less than the size of the vector (before this removal).

Throws an ArrayIndexOutOfBoundsException if the index is not in this range.

public boolean remove(Object theElement)

Removes the first occurrence of theElement from the calling vector. If theElement is found in the vec-
tor, then each element in the vector with an index greater than or equal to theElement's index is
decreased to have an index that is 1 less than the value it had previously. Returns true if theElement
was found (and removed). Returns false if theElement was not found in the calling vector. If the ele-
ment was removed, the size is decreased by 1. The capacity is not changed.

public void clear()

Removes all elements from the calling vector and sets its size to zero.

SEARCH METHODS

public boolean isEmpty()

Returns true if the calling vector is empty (that is, has size 0); otherwise returns false.

public boolean contains(Object target)

Returns true if target is an element of the calling vector; otherwise returns false. Uses the method
equals of the object target to test for equality.

Display 15.2 Some Methods in the Class Vector (Part 2 of 5)

5640_ch15.fm Page 740 Wednesday, February 11, 2004 2:47 PM

Vectors 741

public int indexOf(Object target)

Returns the index of the first element that is equal to target. Uses the method equals of the object tar-
get to test for equality. Returns −1 if target is not found.

public int indexOf(Object target, int startIndex)

Returns the index of the first element that is equal to target, but only considers indices that are greater
than or equal to startIndex. Uses the method equals of the object target to test for equality. Returns
−1 if target is not found.

Throws an IndexOutOfBoundsException if startIndex is greater than or equal to the size of the
array.

public int lastIndexOf(Object target)

Returns the index of the last element that is equal to target. Uses the method equals of the object tar-
get to test for equality. Returns −1 if target is not found.

public Object firstElement()

Returns the first element of the calling vector.

Throws a NoSuchElementException if the vector is empty.

public Object lastElement()

Returns the last element of the calling vector.

Throws a NoSuchElementException if the vector is empty.

ITERATORS

public Iterator iterator()

Returns an iterator for the calling vector.

CONVERTING TO AN ARRAY

public Object[] toArray()

Returns an array containing all of the elements in the calling vector. The elements of the array are indexed
the same as in the calling vector.

public Object[] toArray(Object[] a)

Returns an array containing all of the elements in the calling vector. The elements of the array are indexed
the same as in the calling vector.

 The argument a is used primarily to specify the type of the array returned. The exact details are as follows:

The type of the returned array is that of a. If the collection fits in the array a, then a is used to hold the ele-
ments of the returned array; otherwise a new array is created with the same type as a.

If a has more elements than the calling vector, then the element in a immediately following the end of the
elements copied from the calling vector is set to null.

Throws an ArrayStoreException if the type of a is not an ancestor type of the type of every element in
the vector.

Throws a NullPointerException if a is null.

Display 15.2 Some Methods in the Class Vector (Part 3 of 5)

5640_ch15.fm Page 741 Wednesday, February 11, 2004 2:47 PM

742 Chapter 15 Collections and Iterators

MEMORY MANAGEMENT

public int size()

 Returns the number of elements in the calling vector.

public int capacity()

Returns the current capacity of the calling vector.

public void ensureCapacity(int newCapacity)

Increases the capacity of the calling vector to ensure that it can hold at least newCapacity elements.
Using ensureCapacity can sometimes increase efficiency, but its use is not needed for any other reason.

public void trimToSize()

Trims the capacity of the calling vector to be the vector's current size. This is used to save storage.

public void setSize(int newSize)

Sets the size of the calling vector to newSize. If newSize is greater than the current size, the new ele-
ments receive the value null. If newSize is less than the current size, all elements at index newSize and
greater are discarded.

Throws an ArrayIndexOutOfBoundsException if newSize is negative.

MAKE A COPY

public Object clone()

Returns a clone of the calling vector. The clone is an identical copy of the calling vector.

OLDER METHODS

These are methods that are not part of the newer collection framework, but are retained for backward
compatibility. You should use the above newer methods instead. But, you may find these older methods
used in older code.

public void setElementAt(Object newElement, int index)

Same as set with the arguments reversed but does not return the element replaced.

Throws an IndexOutOfBoundsException if index is out of range.

public Object elementAt(int index)

Same as get.

public void addElement(Object newElement)

Same as add.

public void insertElementAt(Object newElement, int index)

Same as add.

Display 15.2 Some Methods in the Class Vector (Part 4 of 5)

5640_ch15.fm Page 742 Wednesday, February 11, 2004 2:47 PM

Vectors 743

Pitfall

The base type of an array can be any type whatsoever. On the other hand, all vectors
have the base type Object, so to store an item in a vector, it must be of type Object. As
you will recall, every class is a descendent class of the class Object. Thus, every object of
every class type is also of type Object. So you can add elements of any class type to a
vector. In fact, you can even add elements of different class types to the same vector,
but this can be a dangerous thing to do. On the other hand, you cannot add elements
of any primitive type, such as int, double, or char, to a vector.

If you want the equivalent of a vector of elements of some primitive type, such as the
type int, you must use the corresponding wrapper class, in this case Integer. You can have
a vector of elements that are of type Integer. Wrapper classes are discussed in Chapter 5.

VECTOR ELEMENTS ARE OF TYPE Object

The fact that an element added to a vector must be an Object has more consequences than you
might at first think. Consider the following:

Vector v = new Vector();
String stringVariable = "Hello";
v.add(stringVariable);
System.out.println(
 "Length is " + (v.get(0)).length());

Although this may look fine, it will produce an error message telling you that v.get(0) does not
have a method named length.

You might protest that v.get(0) is of type String, and so it does have a method named
length. You would be right, but Java acts as if it does not know that v.get(0) is of type
String. It knows only that it is an element of a vector, and all it admits to knowing about ele-
ments of a vector is that they are of type Object. You need to tell Java that v.get(0) is of type
String by using a type cast as follows:

(String)(v.get(0))

public void removeElementAt(int index)

Same as remove but does not return the element removed.

public boolean removeElement(Object theElement)

Same as remove.

public void removeAllElements()

Same as clear.

base type

primitive types

Display 15.2 Some Methods in the Class Vector (Part 5 of 5)

5640_ch15.fm Page 743 Wednesday, February 11, 2004 2:47 PM

744 Chapter 15 Collections and Iterators

Self-Test Exercises

So the troublesome output statement needs to be rewritten to the following, which will work fine:

System.out.println("Length is " +
 ((String)(v.get(0))).length());

There are certain special cases where a type cast is not required (although it would cause no
harm). Note that System.out.println and certain other methods automatically add an invo-
cation of toString() to their argument. Since the class Object does have a method named
toString(), the following works fine:

System.out.println(v.get(0));

because it is equivalent to

System.out.println((v.get(0)).toString());

(and dynamic binding ensures that the correct version of toString() is invoked).

1. Suppose v is a vector. How do you add the string "Hello" to the vector v?

2. Suppose v is a vector with the string "Hello" at index position 10. How do you change the
string at index position 10 to "Good-bye"?

3. Can you use the method set to place an element in a vector at any index you want?

4. Can you use the method add to place an element in a vector at any index you want? Can
you use the method add to insert an element at any position (any index) for which you can-
not use set?

5. If you create a vector with the following, can the vector contain more than 50 elements?

Vector v = new Vector(50);

6. Give code that will output all the elements in a vector v to the screen. Assume that the ele-
ments all have a suitable toString() method.

THE BASE TYPE OF A VECTOR IS Object

All vectors have base type Object, but all classes are descendent classes of the class Object.
This means that an element of a vector can be an object of any class, but you cannot have vector
elements of a primitive type such as int, double, or char.

Since vector elements are normally returned as values of type Object, they usually require a type
cast before you can do much with them.

5640_ch15.fm Page 744 Wednesday, February 11, 2004 2:47 PM

Vectors 745

Tip

7. Write a class for sorting strings into lexicographic order that follows the outline of the class
SelectionSort in Display 6.9 of Chapter 6. Your definition, however, will use a vector of
elements (all of which happen to be strings) rather than an array of elements of type int.
Remember, you can compare two strings to see which is lexicographically first by using the
String method compareTo. For strings s1 and s2, s1.compareTo(s2) returns a negative
number if s1 is lexicographically before s2, returns 0 if s1 equals s2, and returns a positive
number if s1 is lexicographically after s2. Call your class StringSelectionSort.

COMPARING VECTORS AND ARRAYS

Vectors are used for the same sorts of applications as arrays. Each has its advantages and disadvan-
tages. The advantage of vectors is that they have many built-in features. For example, a vector is
automatically a partially filled vector. The method size keeps track of how much of the vector is
filled with meaningful elements. This is illustrated in the sample program in Display 15.1. Vectors also
have built-in methods to accomplish many of the common tasks that would require you to design
your own code if you were using arrays. For example, with vectors, you have a method to insert an
element at any specified point in the vector, a method to delete an element from any place in the
vector, and a method to test whether or not an element is in the vector. (See Display 15.2.)

Perhaps the biggest advantage of vectors over arrays is that vectors automatically increase their
capacity should your program need room for more elements. Your program can determine the size
of an array when the program is run, but once the array is created, the size cannot be changed.

Some advantages of arrays are that they are more efficient, they have a very nice notation that
uses the square brackets, and, perhaps most importantly, the base type of an array can be of any
type. The base type of a vector is always the type Object. This is not a disadvantage if you want
to store objects of some class, but if you want to store values of a primitive type in a vector, you
need to use the wrapper class corresponding to the primitive type. With an array, you can simply
make the primitive type the base type of the array.

■ VECTOR ITERATORS

An iterator is an object that allows your code to produce the elements in a vector or
other container one after the other, producing each element exactly once. (If there are
repeated elements in the vector, the iterator repeats them the same number of times.)
Iterators will be discussed in detail later in this chapter, but we will give you a preview
of iterators by describing how they work with vectors.

An iterator for a vector satisfies the Iterator interface, which has only the following
three method headings that must be implemented:

public Object next();
Returns the next object in the vector.

public boolean hasNext();
Returns true if the method next has not yet returned all the elements in the vector; returns false
otherwise.

iterator

Iterator
interface

5640_ch15.fm Page 745 Wednesday, February 11, 2004 2:47 PM

746 Chapter 15 Collections and Iterators

Tip

public void remove()
Removes the last element returned by next(). This method can be called at most once for each call
of next().

In the case of a vector, the iterator produces the elements in order going in order from
the element at index 0 to the element at the last index used.

The vector should not have elements added or removed while an iteration through
the elements is in progress, except, that is, by the iterator method remove(); otherwise
the behavior of the iterator methods is no longer guaranteed to be as described.

Vectors have a method that produces an iterator for the vector. The method is called
iterator, so the following produces an iterator named i for the vector v:

Iterator i = v.iterator();

You can then do something to all the elements in the vector as follows:

while (i.hasNext())
 Do something with i.next().

For example, if the vector contains String objects, one concrete example is

Iterator i = v.iterator();
int count = 0;
while (i.hasNext())
 count = count + ((String)i.next()).length();

This code sets the value of count equal to the total number of characters in all the ele-
ments of the vector v.

Use of the type name Iterator requires an import statement, such as the following:

import java.util.Iterator;

Another example of using an iterator for a vector is given in Display 15.3. If you
compare Displays 15.1 and 15.3, you will quickly realize that you can always use an
int variable for a vector index in place of an iterator for the vector. However, some
might say that the use of an iterator is cleaner than the use of an int variable for an
index. Our main reason for doing this example is to have a concrete example of an iter-
ator to motivate our general discussion of iterators later in this chapter.

USE trimToSize TO SAVE MEMORY ✜

Vectors automatically increase their capacity when your program needs them to have additional
capacity. However, the capacity may increase beyond what your program requires. Also, when
your program needs less capacity in a vector, the vector does not automatically shrink. If your

5640_ch15.fm Page 746 Wednesday, February 11, 2004 2:47 PM

Vectors 747

Display 15.3 A Vector Iterator

1 import java.util.Vector;
2 import java.util.Iterator;

3 public class VectorIteratorDemo
4 {
5 public static void main(String[] args)
6 {
7 Vector poem = new Vector(10);

8 poem.add("A diller,");
9 poem.add("a dollar,");

10 poem.add("a ten o'clock vector scholar.");

11 System.out.println("The vector poem contains:");

12 Iterator i = poem.iterator();
13 while (i.hasNext())
14 System.out.println(i.next());

15 i.remove();

16 System.out.println();
17 System.out.println("The vector poem now contains:");

18 i = poem.iterator();
19 while (i.hasNext())
20 System.out.println(i.next());

21 System.out.println("End of program.");
22 }
23 }

SAMPLE DIALOGUE

The vector poem contains:
A diller,
a dollar,
a ten o'clock vector scholar.

The vector poem now contains:
A diller,
a dollar,
End of program.

5640_ch15.fm Page 747 Wednesday, February 11, 2004 2:47 PM

codes747.html

748 Chapter 15 Collections and Iterators

Self-Test Exercises

vector has a large amount of excess capacity, you can save memory by using the methods set-
Size and trimToSize to shrink the capacity of a vector.

 If v is a vector, an invocation of v.setSize(n) will set the size of v to n and discard any ele-
ments in positions n or higher; if n is greater than the current size of the vector, the new element
positions will be set to null.

The invocation v.trimToSize() will shrink the capacity of the vector v down to the size of v, so
that there is no unused capacity in v. Normally, you should use trimToSize only when you
know the vector will not later need its extra capacity.

8. What is the base type of a vector?

9. Can you store a value of type int in a vector?

10. Suppose v is a vector. What is the difference between v.capacity() and v.size()?

11. Suppose v is a vector and v.size() returns 10. Now suppose that your program has the
following invocation:

v.setSize(20);

What will be the values of the new elements at indices 10 through 19? (Garbage values?
Some default value? What default value? Something else?)

12. Rewrite the following method so it uses an iterator in place of the for loop:

/**
 Returns the lexicographically first value among
 v.get(0), v.get(1),..., v.get(v.size() − 1)
 Precondition: v contains only Strings; v.size() > 0.
*/
private static String smallest(Vector v)
{
 String min = (String)v.get(0);
 int index;
 for (index = 1; index < v.size(); index++)
 if (((String)(v.get(index))).compareTo(min) < 0)
 min = (String)v.get(index);
 return min;
}

setSize

trimToSize

5640_ch15.fm Page 748 Wednesday, February 11, 2004 2:47 PM

Collections 749

Collections
Put all your eggs in one basket and
—WATCH THAT BASKET.

Mark Twain, Pudd’nhead Wilson

A Java collection is a class that holds objects. This concept is made precise by the Col-
lection interface. A Java collection is any class that implements the Collection inter-
face. One example of a Java collection class is the Vector class. The Collection
interface allows you to write code that applies to all Java collections so that you do not
have to rewrite the code for each specific collection. There are other interfaces and
abstract classes that are in some sense or another produced from the Collection inter-
face. Some of these are shown in Display 15.4. In this section we give you an introduc-
tion to this Java collection framework. The topic is too large to treat exhaustively in this
book, so this can only be an introductory treatment.

Collections are used along with iterators, which are discussed in Section 15.3. Sepa-
rating collections and iterators into two sections turns out to be a handy way of orga-
nizing the material, but the two topics of collections and iterators are intimately
intertwined and in practice you normally use them together.

■ THE COLLECTION FRAMEWORK

The Collection interface is the highest level of Java’s framework for collection classes.
The Collection interface describes the basic operations that all collection classes should
implement. These operations (method headings) for the Collection interface are given
in Display 15.5. Since an interface is a type, you can define methods with a parameter of
type Collection and that parameter can be filled in with an argument that is an object
of any class in the collection framework (that is, any class that implements the Collec-
tion interface). This turns out to be a very powerful tool. Let’s explore the possibilities.
So far, we have seen one class that implements the Collection interface, namely the
class Vector. In addition to the methods given in Section 15.1 for the class Vector, the
class Vector also implements all the methods given in Display 15.5. There are a number
of different predefined classes that implement the Collection interface, and you can
define your own classes that implement the Collection interface. If you write a method
to manipulate a parameter of type Collection, it will work for all of these classes. Also,
the methods in the Collection interface ensure that you can intermix the use of differ-
ent collection classes. For example, consider the method

public boolean containsAll(Collection collectionOfTargets)

15.2

collection

5640_ch15.fm Page 749 Wednesday, February 11, 2004 2:47 PM

750 Chapter 15 Collections and Iterators

You can use this with two Vectors (one the calling object and one the argument) to see
if one contains all the elements of the other, but you can also use it with a Vector
object and an object of any other class that implements the Collection interface to
compare the elements in these two different kinds of Collections.

Abstract Class

Interface

Display 15.4 The Collection Landscape

Concrete Class

Collection

Set List

AbstractCollection

AbstractSet AbstractListSortedSet

Vector AbstractSequentialList

LinkedListHashSetTreeSet

A single line between two boxes means the
lower class or interface is derived from
(extends) the higher one.

Im
pl

em
en

ts

Im
pl

em
en

ts

Im
pl

em
en

ts

Im
plem

ents

5640_ch15.fm Page 750 Wednesday, February 11, 2004 2:47 PM

Collections 751

Display 15.5 Method Headings in the Collection Interface (Part 1 of 3)

The Collection interface is in the java.util package.

All the exception classes mentioned are unchecked exceptions, which means they are not required to be
caught in a catch block or declared in a throws clause.

All the exception classes mentioned are in the package java.lang and so do not require any import
statement.

CONSTRUCTORS

Although not officially required by the interface, any class that implements the Collection interface
should have at least two constructors: A no-argument constructor that creates an empty Collection
object, and a constructor with one parameter of type Collection that creates a Collection object
with the same elements as the constructor argument. The interface does not specify whether the copy pro-
duced by the one-argument constructor is a shallow copy or a deep copy of its argument.

boolean isEmpty()

Returns true if the calling object is empty; otherwise returns false.

public boolean contains(Object target)

Returns true if the calling object contains at least one instance of target. Uses target.equals to
determine if target is in the calling object.

Throws a ClassCastException if the type of target is incompatible with the calling object (optional).

Throws a NullPointerException if target is null and the calling object does not support null ele-
ments (optional).

public boolean containsAll(Collection collectionOfTargets)

Returns true if the calling object contains all of the elements in collectionOfTargets. For an ele-
ment in collectionOfTargets, this method uses element.equals to determine if element is in the
calling object.

Throws a ClassCastException if the types of one or more elements in collectionOfTargets are
incompatible with the calling object (optional).

Throws a NullPointerException if collectionOfTargets contains one or more null elements and
the calling object does not support null elements (optional).

Throws a NullPointerException if collectionOfTargets is null.

public boolean equals(Object other)

This is the equals of the collection, not the equals of the elements in the collection. Overrides the inher-
ited method equals. Although there are no official constraints on equals for a collection, it should be
defined as we have described in Chapter 7 and also to satisfy the intuitive notion of collections being
equal.

public int size()

Returns the number of elements in the calling object. If the calling object contains more than Inte-
ger.MAX_VALUE elements, returns Integer.MAX_VALUE.

5640_ch15.fm Page 751 Wednesday, February 11, 2004 2:47 PM

752 Chapter 15 Collections and Iterators

Iterator iterator()

Returns an iterator for the calling object. (Iterators are discussed in Section 15.3.)

public Object[] toArray()

Returns an array containing all of the elements in the calling object. If the calling object makes any guar-
antees as to what order its elements are returned by its iterator, this method must return the elements in
the same order.

The array returned should be a new array so that the calling object has no references to the returned array.
(You might also want the elements in the array to be clones of the elements in the collection. However, this
is apparently not required by the interface, since library classes, such as Vector, return arrays that con-
tain references to the elements in the collection.)

public Object[] toArray(Object[] a)

Returns an array containing all of the elements in the calling object. The argument a is used primarily to
specify the type of the array returned. The exact details are as follows:

The type of the returned array is that of a. If the elements in the calling object fit in the array a, then a is
used to hold the elements of the returned array; otherwise a new array is created with the same type as a.

If a has more elements than the calling object, the element in a immediately following the end of the cop-
ied elements is set to null.

If the calling object makes any guarantees as to what order its elements are returned by its iterator, this
method must return the elements in the same order. (Iterators are discussed in Section 15.3.)

Throws an ArrayStoreException if the type of a is not an ancestor type of the type of every element in
the calling object.

Throws a NullPointerException if a is null.

public int hashCode()

Returns the hash code value for the calling object. Neither hash codes nor this method are discussed in this
book. This entry is only here to make the definition of the Collection interface complete. You can safely
ignore this entry until you go on to study hash codes in a more advanced book. In the meantime, if you
need to implement this method, have the method throw an UnsupportedOperationException.

OPTIONAL METHODS

The following methods are optional, which means they still must be implemented, but the implementation
can simply throw an UnsupportedOperationException if for some reason you do not want to give
them a “real” implementation. An UnsupportedOperationException is a RunTimeException and
so is not required to be caught or declared in a throws clause.

public boolean add(Object element) (Optional)

Ensures that the calling object contains the specified element. Returns true if the calling object changed
as a result of the call. Returns false if the calling object does not permit duplicates and already contains
element.

Throws an UnsupportedOperationException if this method is not supported by the class that imple-
ments this interface.

Throws a ClassCastException if the class of element prevents it from being added to the calling object.

Throws a NullPointerException if element is null and the calling object does not support null elements.

Throws an IllegalArgumentException if some other aspect of element prevents it from being added
to the calling object.

Display 15.5 Method Headings in the Collection Interface (Part 2 of 3)

5640_ch15.fm Page 752 Wednesday, February 11, 2004 2:47 PM

Collections 753

public boolean addAll(Collection collectionToAdd) (Optional)

Ensures that the calling object contains all the elements in collectionToAdd. Returns true if the calling
object changed as a result of the call; returns false otherwise.

Throws an UnsupportedOperationException if this method is not supported by the class that imple-
ments this interface.

Throws a ClassCastException if the class of an element of collectionToAdd prevents it from being
added to the calling object.

Throws a NullPointerException if collectionToAdd contains one or more null elements and the
calling object does not support null elements, or if collectionToAdd is null.

Throws an IllegalArgumentException if some aspect of an element of collectionToAdd prevents
it from being added to the calling object.

public boolean remove(Object element) (Optional)

Removes a single instance of the element from the calling object, if it is present. Returns true if the call-
ing object contained the element; returns false otherwise.

Throws an UnsupportedOperationException if this method is not supported by the class that imple-
ments this interface.

Throws a ClassCastException if the type of element is incompatible with the calling object (optional).

Throws a NullPointerException if element is null and the calling object does not support null
elements (optional).

public boolean removeAll(Collection collectionToRemove) (Optional)

Removes all the calling object’s elements that are also contained in collectionToRemove. Returns
true if the calling object was changed; otherwise returns false.

Throws an UnsupportedOperationException if this method is not supported by the class that imple-
ments this interface.

Throws a ClassCastException if the types of one or more elements in collectionToRemove are
incompatible with the calling collection (optional).

Throws a NullPointerException if collectionToRemove contains one or more null elements and
the calling object does not support null elements (optional).

Throws a NullPointerException if collectionToRemove is null.

public void clear() (Optional)

Removes all the elements from the calling object.

Throws an UnsupportedOperationException if this method is not supported by the class that imple-
ments this interface.

public boolean retainAll(Collection saveElements)

Retains only the elements in the calling object that are also contained in the collection saveElements. In
other words, removes from the calling object all of its elements that are not contained in the collection
saveElements. Returns true if the calling object was changed; otherwise returns false.

Throws a ClassCastException if the types of one or more elements in saveElements are incompati-
ble with the calling object (optional).

Throws a NullPointerException if saveElements contains one or more null elements and the call-
ing object does not support null elements (optional).

Throws a NullPointerException if saveElements is null.

Display 15.5 Method Headings in the Collection Interface (Part 3 of 3)

5640_ch15.fm Page 753 Wednesday, February 11, 2004 2:47 PM

754 Chapter 15 Collections and Iterators

The relationships between some of the classes and interfaces that implement or
extend the Collection interface are given in Display 15.4. There are two main inter-
faces that extend the Collection interface: the Set interface and the List interface.
Classes that implement the Set interface do not allow an element in the class to occur
more than once. Classes that implement the List interface have their elements ordered
as on a list, so there is a zeroth element, a first element, a second element, and so forth.
A class that implements the List interface allows elements to occur more than once.
The Vector class implements the List interface. The methods in the Set and List
interfaces are given in Displays 15.6 and 15.7, respectively. The Set interface has the
same method headings as the Collection interface, but in some cases the semantics
(intended meanings) are different and methods that are optional in the Collection
interface are required in the Set interfaces. The List interface has more method head-
ings than the Collection interface, and some of the methods inherited from the Col-
lection interface receive somewhat different semantics.

Display 15.6 Methods in the Set Interface (Part 1 of 4)

COLLECTIONS STORE VALUES OF TYPE Object

All the collection classes and interfaces discussed in this chapter have base type Object, but all
classes are descendent classes of the class Object. This means that an element of a collection can
be an object of any class, but you cannot have a collection of elements of a primitive type such as
int, double, or char.

Since collection elements are normally returned as values of type Object, they usually require a
type cast before you can do much with them.

The Set interface is in the java.util package.

The Set interface extends the Collection interface.

All the exception classes mentioned are the kind that are not required to be caught in a catch block or
declared in a throws clause.

All the exception classes mentioned are in the package java.lang and so do not require any import
statement.

CONSTRUCTORS

Although not officially required by the interface, any class that implements the Set interface should have
at least two constructors: A no-argument constructor that creates an empty Set object, and a constructor
with one parameter of type Collection that creates a Set object with the same elements as the con-
structor argument.

boolean isEmpty()

Returns true if the calling object is empty; otherwise returns false.

Set
List

interfaces

5640_ch15.fm Page 754 Wednesday, February 11, 2004 2:47 PM

Collections 755

public boolean contains(Object target)

Returns true if the calling object contains at least one instance of target. Uses target.equals to
determine if target is in the calling object.

Throws a ClassCastException if the type of target is incompatible with the calling object (optional).

Throws a NullPointerException if target is null and the calling object does not support null ele-
ments (optional).

public boolean containsAll(Collection collectionOfTargets)

Returns true if the calling object contains all of the elements in collectionOfTargets. For an ele-
ment in collectionOfTargets, this method uses element.equals to determine if element is in the
calling object. If collectionOfTargets is itself a Set, this is a test to see if collectionOfTargets is
a subset of the calling object.

Throws a ClassCastException if the types of one or more elements in collectionOfTargets are
incompatible with the calling object (optional).

Throws a NullPointerException if collectionOfTargets contains one or more null elements and
the calling object does not support null elements (optional).

Throws a NullPointerException if collectionOfTargets is null.

public boolean equals(Object other)

If the argument is a Set, returns true if the calling object and the argument contain exactly the same
elements; otherwise returns false. If the argument is not a Set, false is returned.

public int size()

Returns the number of elements in the calling object. If the calling object contains more than Inte-
ger.MAX_VALUE elements, returns Integer.MAX_VALUE.

Iterator iterator()

Returns an iterator for the calling object. (Iterators are discussed in Section 15.3.)

public Object[] toArray()

Returns an array containing all of the elements in the calling object. A new array must be returned so that
the calling object has no references to the returned array.

public Object[] toArray(Object[] a)

Returns an array containing all of the elements in the calling object. The argument a is used primarily to
specify the type of the array returned. The exact details are described in the table for the Collection
interface (Display 15.5).

Throws an ArrayStoreException if the type of a is not an ancestor type of the type of every element in
the calling object.

Throws a NullPointerException if a is null.

Display 15.6 Methods in the Set Interface (Part 2 of 4)

5640_ch15.fm Page 755 Wednesday, February 11, 2004 2:47 PM

756 Chapter 15 Collections and Iterators

public int hashCode()

Returns the hash code value for the calling object. Neither hash codes nor this method are discussed in this
book. This entry is here only to make the definition of the Set interface complete. You can safely ignore
this entry until you go on to study hash codes in a more advanced book. In the meantime, if you need to
implement this method, have it throw an UnsupportedOperationException.

ADDING AND REMOVING ELEMENTS

Unlike the Collection interface, the following methods are required for the Set interface.

public boolean add(Object element)

If element is not already in the calling object, element is added to the calling object and true is
returned. If element is in the calling object, the calling object is unchanged and false is returned.

Throws a ClassCastException if the class of element prevents it from being added to the set.

Throws a NullPointerException if element is null and the set does not support null elements.

Throws an IllegalArgumentException if some other aspect of element prevents it from being added
to this set.

public boolean addAll(Collection collectionToAdd)

Ensures that the calling object contains all the elements in collectionToAdd. Returns true if the calling
object changed as a result of the call; returns false otherwise. Thus, if collectionToAdd is a Set, then
the calling object is changed to the union of itself with collectionToAdd.

Throws a ClassCastException if the class of some element of collectionToAdd prevents it from
being added to the calling object.

Throws NullPointerException if collectionToAdd contains one or more null elements and the
calling object does not support null elements, or if collectionToAdd is null.

Throws an IllegalArgumentException if some aspect of some element of collectionToAdd pre-
vents it from being added to the calling object.

public boolean remove(Object element)

Removes the element from the calling object, if it is present. Returns true if the calling object contained
the element; returns false otherwise.

Throws a ClassCastException if the type of element is incompatible with the calling object
(optional).

Throws a NullPointerException if element is null and the calling object does not support null
elements (optional).

public boolean removeAll(Collection collectionToRemove)

Removes all the calling object's elements that are also contained in collectionToRemove. Returns
true if the calling object was changed; otherwise returns false.

Throws a ClassCastException if the types of one or more elements in collectionToRemove are
incompatible with the calling object (optional).

Throws a NullPointerException if the calling object contains a null element and collection-
ToRemove does not support null elements (optional).

Throws a NullPointerException if collectionToRemove is null.

Display 15.6 Methods in the Set Interface (Part 3 of 4)

5640_ch15.fm Page 756 Wednesday, February 11, 2004 2:47 PM

Collections 757

Display 15.7 Methods in the List Interface (Part 1 of 6)

public void clear()

Removes all the elements from the calling object.

public boolean retainAll(Collection saveElements)

Retains only the elements in the calling object that are also contained in the collection saveElements. In
other words, removes from the calling object all of its elements that are not contained in the collection
saveElements. Returns true if the calling object was changed; otherwise returns false. If the argu-
ment is itself a Set, this changes the calling object to the intersection of itself with the argument.

Throws a ClassCastException if the types of one or more elements in the calling object are incompati-
ble with saveElements (optional).

Throws a NullPointerException if saveElements contains a null element and the calling object
does not support null elements (optional).

Throws a NullPointerException if saveElements is null.

The List interface is in the java.util package.

The List interface extends the Collection interface.

All the exception classes mentioned are the kind that are not required to be caught in a catch block or
declared in a throws clause.

All the exception classes mentioned are in the package java.lang and so do not require any import
statement.

CONSTRUCTORS

Although not officially required by the interface, any class that implements the List interface should
have at least two constructors: A no-argument constructor that creates an empty List object, and a con-
structor with one parameter of type Collection that creates a List object with the same elements as the
constructor argument. If the argument imposes an ordering on its elements, then the List created should
preserve this ordering.

boolean isEmpty()

Returns true if the calling object is empty; otherwise returns false.

public boolean contains(Object target)

Returns true if the calling object contains at least one instance of target. Uses target.equals to
determine if target is in the calling object.

Throws a ClassCastException if the type of target is incompatible with the calling object (optional).

Throws a NullPointerException if target is null and the calling object does not support null ele-
ments (optional).

Display 15.6 Methods in the Set Interface (Part 4 of 4)

5640_ch15.fm Page 757 Wednesday, February 11, 2004 2:47 PM

758 Chapter 15 Collections and Iterators

public boolean containsAll(Collection collectionOfTargets)

Returns true if the calling object contains all of the elements in collectionOfTargets. For an ele-
ment in collectionOfTargets, this method uses element.equals to determine if element is in the
calling object. The elements need not be in the same order or have the same multiplicity in collection-
OfTargets and in the calling object.

public boolean equals(Object other)

If the argument is a List, returns true if the calling object and the argument contain exactly the same ele-
ments in exactly the same order; otherwise returns false. If the argument is not a List, false is returned.

public int size()

Returns the number of elements in the calling object. If the calling object contains more than Inte-
ger.MAX_VALUE elements, returns Integer.MAX_VALUE.

Iterator iterator()

Returns an iterator for the calling object. (Iterators are discussed in Section 15.3.)

public Object[] toArray()

Returns an array containing all of the elements in the calling object. The elements in the returned array are
in the same order as in the calling object. A new array must be returned so that the calling object has no
references to the returned array.

public Object[] toArray(Object[] a)

Returns an array containing all of the elements in the calling object. The elements in the returned array are
in the same order as in the calling object. The argument a is used primarily to specify the type of the array
returned. The exact details are described in the table for the Collection interface (Display 15.5).

Throws an ArrayStoreException if the type of a is not an ancestor type of the type of every element in
the calling object.

Throws a NullPointerException if a is null.

public int hashCode()

Returns the hash code value for the calling object. Neither hash codes nor this method are discussed in this
book. This entry is here only to make the definition of the list interface complete. You can safely ignore
this entry until you go on to study hash codes in a more advanced book. In the meantime, if you need to
implement this method, have it throw an UnsupportedOperationException.

OPTIONAL METHODS

As with the Collection interface, the following methods are optional, which means they still must be
implemented, but the implementation can simply throw an UnsupportedOperationException if for
some reason you do not want to give them a “real” implementation. An UnsupportedOperationEx-
ception is a RunTimeException and so is not required to be caught or declared in a throws clause.

Display 15.7 Methods in the List Interface (Part 2 of 6)

5640_ch15.fm Page 758 Wednesday, February 11, 2004 2:47 PM

Collections 759

public boolean add(Object element) (Optional)

Adds element to the end of the calling object’s list. Normally returns true. Returns false if the opera-
tion failed, but if the operation failed, something is seriously wrong and you will probably get a run-time
error anyway.

Throws an UnsupportedOperationException if the add method is not supported by the calling object.

Throws a ClassCastException if the class of element prevents it from being added to the calling object.

Throws a NullPointerException if element is null and the calling object does not support null
elements.

Throws an IllegalArgumentException if some aspect of element prevents it from being added to
the calling object.

public boolean addAll(Collection collectionToAdd) (Optional)

Adds all of the elements in collectionToAdd to the end of the calling object’s list. The elements are
added in the order they are produced by an iterator for collectionToAdd.

Throws an UnsupportedOperationException if the addAll method is not supported by the calling object.

Throws a ClassCastException if the class of an element in collectionToAdd prevents it from being
added to the calling object.

Throws a NullPointerException if collectionToAdd contains one or more null elements and the
calling object does not support null elements, or if collectionToAdd is null.

Throws an IllegalArgumentException if some aspect of an element in collectionToAdd prevents
it from being added to the calling object.

public boolean remove(Object element) (Optional)

Removes the first occurrence of element from the calling object’s list, if it is present. Returns true if the
calling object contained the element; returns false otherwise.

Throws a ClassCastException if the type of element is incompatible with the calling object (optional).

Throws a NullPointerException if element is null and the calling object does not support null
elements (optional).

Throws an UnsupportedOperationException if the remove method is not supported by the calling
object.

public boolean removeAll(Collection collectionToRemove) (Optional)

Removes all the calling object's elements that are also in collectionToRemove. Returns true if the
calling object was changed; otherwise returns false.

Throws an UnsupportedOperationException if the removeAll method is not supported by the call-
ing object.

Throws a ClassCastException if the types of one or more elements in the calling object are incompati-
ble with collectionToRemove (optional).

Throws a NullPointerException if the calling object contains one or more null elements and col-
lectionToRemove does not support null elements (optional).

Throws a NullPointerException if collectionToRemove is null.

Display 15.7 Methods in the List Interface (Part 3 of 6)

5640_ch15.fm Page 759 Wednesday, February 11, 2004 2:47 PM

760 Chapter 15 Collections and Iterators

public void clear() (Optional)

Removes all the elements from the calling object.

Throws an UnsupportedOperationException if the clear method is not supported by the calling object.

public boolean retainAll(Collection saveElements) (Optional)

Retains only the elements in the calling object that are also in the collection saveElements. In other
words, removes from the calling object all of its elements that are not contained in the collection
saveElements. Returns true if the calling object was changed; otherwise returns false.

Throws an UnsupportedOperationException if the retainAll method is not supported by the calling object.

Throws a ClassCastException if the types of one or more elements in the calling object are incompat-
ible with saveElements (optional).

Throws a NullPointerException if the calling object contains one or more null elements and
saveElements does not support null elements (optional).

Throws a NullPointerException if the saveElements is null.

NEW METHOD HEADINGS

The following methods are in the List interface but were not in the Collection interface. Those that are
optional are noted.

public void add(int index, Object newElement) (Optional)

Inserts newElement in the calling object’s list at location index. The old elements at location index and
higher are moved to higher indices.

Throws an IndexOutOfBoundsException if the index is not in the range:

0 <= index <= size()

Throws an UnsupportedOperationException if this add method is not supported by the calling object.

Throws a ClassCastException if the class of newElement prevents it from being added to the calling object.

Throws a NullPointerException if newElement is null and the calling object does not support null
elements.

Throws an IllegalArgumentException if some aspect of newElement prevents it from being added
to the calling object.

public boolean addAll(int index, Collection collectionToAdd) (Optional)

Inserts all of the elements in collectionToAdd to the calling object’s list starting at location index. The
old elements at location index and higher are moved to higher indices. The elements are added in the
order they are produced by an iterator for collectionToAdd.

Throws an IndexOutOfBoundsException if the index is not in the range:

0 <= index <= size()

Throws an UnsupportedOperationException if the addAll method is not supported by the calling object.

Throws a ClassCastException if the class of one of the elements of collectionToAdd prevents it
from being added to the calling object.

Display 15.7 Methods in the List Interface (Part 4 of 6)

5640_ch15.fm Page 760 Wednesday, February 11, 2004 2:47 PM

Collections 761

Throws a NullPointerException if collectionToAdd contains one or more null elements and the
calling object does not support null elements, or if collectionToAdd is null.

Throws an IllegalArgumentException if some aspect of one of the elements of collectionToAdd
prevents it from being added to the calling object.

public Object get(int index)

Returns the object at position index.

Throws an IndexOutOfBoundsException if the index is not in the range:

0 <= index < size()

public Object set(int index, Object newElement) (Optional)

Sets the element at the specified index to newElement. The element previously at that position is
returned.

Throws an IndexOutOfBoundsException if the index is not in the range:

0 <= index < size()

Throws an UnsupportedOperationException if the set method is not supported by the calling object.

Throws a ClassCastException if the class of newElement prevents it from being added to the calling
object.

Throws a NullPointerException if newElement is null and the calling object does not support null
elements.

Throws an IllegalArgumentException if some aspect of newElement prevents it from being added
to the calling object.

public Object remove(int index) (Optional)

Removes the element at position index in the calling object. Shifts any subsequent elements to the left
(subtracts one from their indices). Returns the element that was removed from the calling object.

Throws an UnsupportedOperationException if the remove method is not supported by the calling
object.

Throws an IndexOutOfBoundsException if index does not satisfy:

 0 <= index < size()

public int indexOf(Object target)

Returns the index of the first element that is equal to target. Uses the method equals of the object tar-
get to test for equality. Returns −1 if target is not found.

Throws a ClassCastException if the type of target is incompatible with the calling object (optional).

Throws a NullPointerException if target is null and the calling object does not support null ele-
ments (optional).

Display 15.7 Methods in the List Interface (Part 5 of 6)

5640_ch15.fm Page 761 Wednesday, February 11, 2004 2:47 PM

762 Chapter 15 Collections and Iterators

Pitfall

OPTIONAL OPERATIONS

What is the point of an optional method heading in an interface? The whole point of an interface
is to specify what methods can be used with an object of the interface type so that you can write

public int lastIndexOf(Object target)

Returns the index of the last element that is equal to target. Uses the method equals of the object tar-
get to test for equality. Returns −1 if target is not found.

Throws a ClassCastException if the type of target is incompatible with the calling object (optional).

Throws a NullPointerException if target is null and the calling object does not support null ele-
ments (optional).

public List subList(int fromIndex, int toIndex)

Returns a view of the elements at locations fromIndex to toIndex of the calling object; the object at
fromIndex is included; the object, if any, at toIndex is not included. The view uses references into the
calling object; so, changing the view can change the calling object. The returned object will be of type
List but need not be of the same type as the calling object. Returns an empty List if fromIndex equals
toIndex.

Throws an IndexOutOfBoundsException if fromIndex and toIndex do not satisfy:

0 <= fromIndex <= toIndex <= size()

ListIterator listIterator()

Returns a list iterator for the calling object. (Iterators are discussed in Section 15.3.)

ListIterator listIterator(int index)

Returns a list iterator for the calling object starting at index. The first element to be returned by the iter-
ator is the one at index. (Iterators are discussed in Section 15.3.)

Throws an IndexOutOfBoundsException if index does not satisfy:

 0 <= index <= size()

COLLECTION INTERFACES

The primary interfaces for collection classes are the Collection, Set, and List interfaces. Both
the Set and the List interfaces are derived from the Collection interface. The Set interface is
for collections that do not allow repetition of elements and do not impose an order on their ele-
ments. The List interface is for collections that do allow repetition of elements and do impose an
order on their elements.

Display 15.7 Methods in the List Interface (Part 6 of 6)

5640_ch15.fm Page 762 Wednesday, February 11, 2004 2:47 PM

Collections 763

Tip

code for an arbitrary object of the interface type. The reasoning behind these optional methods is
that they normally would be implemented but in unusual situations a programmer may leave
them “unsupported.” (The alternative would be to have two interfaces, one with and one without
the optional operations. Uncharacteristic of the Java designers, they opted for a smaller number
of interfaces.) But, there is still more to the story.

The optional methods are not, strictly speaking, optional. Like the other methods in an interface, the
optional methods must have a method body so that the optional method heading is converted to a
complete method definition. So, what’s optional? The “optional” refers to the semantics of the
method. If the method is optional, then you may give it a trivial implementation and you will not be
considered to have shirked your responsibly to follow the (unenforced) semantics for the interface.

To keep these optional methods from producing unexplained failures, the interface semantics say
that if you do not give an optional method a “real” implementation, then you should have the
method body throw an UnsupportedOperationException. For example, the add method of
the Collection interface is optional and so can be implemented as follows (provided you have
good reason for this):

public boolean add(Object element)
{
 throw new UnsupportedOperationException();
}

The UnsupportedOperationException class is a derived class of the RunTimeException
class and so an UnsupportedOperationException need not be caught in a catch block or
declared in a throws clause.

The intention is that the code for a class that implements an interface with optional methods
would be written and used in such a way that this UnsupportedOperationException would
only be thrown during debugging. These rules on optional methods are part of the semantics of
the interface, and like all other parts of the semantics of an interface, they depend entirely on the
good will and responsibility of the programmer defining the class that implements the interface.

DEALING WITH ALL THOSE EXCEPTIONS

The tables of methods for the various collection interfaces and classes are liberally sprinkled with
statements that certain exceptions are thrown. All these exception classes are of the kind that

OPTIONAL METHODS

When an interface lists a method as “optional,” you still need to implement it when defining a
class that implements the interface. However, if you do not want to give it a “real” definition, you
can simply have the method body throw an UnsupportedOperationException.

5640_ch15.fm Page 763 Wednesday, February 11, 2004 2:47 PM

764 Chapter 15 Collections and Iterators

Self-Test Exercises

need not be caught in a catch block and need not be declared in a throws clause. They are
there primarily for debugging. If you are using an existing collection class, you can view them as
run-time error messages. If you are defining a class as a derived class of some other collection
class, then most or all of the exception throwing will be inherited, so you need not worry too
much about it. If you are defining a collection class from scratch and want your class to imple-
ment one of the collection interfaces, then you do need to throw suitable exceptions as specified
for the interface.

With one exception (no pun intended), all the exception classes mentioned in this chapter are in
the package java.lang and so do not require any import statement. The one exception is the
NoSuchElementException, which is used with vectors in Section 15.1 and with iterators in Sec-
tion 15.3. The NoSuchElementException is in the java.util package, which requires an
import statement if your code mentions the NoSuchElementException class.

13. Give the definition of a boolean valued static method named inSome. The method
inSome has two parameters of type Collection and one parameter of type Object. The
method returns true if the Object is in either (or both) Collections; it returns false
otherwise.

14. Give the definition of a static method named getFirst that has one parameter of type
List and a return type of Object. The method returns the first element in the List or
null if the List is empty.

15. Give the definition of a static boolean valued method named noNull. The method
noNull has one parameter of type Set and removes null from the set if null is in the set;
otherwise it leaves the set unchanged. The method returns true if the set is changed and
false if it is not changed.

■ CONCRETE COLLECTION CLASSES

The abstract classes AbstractSet and AbstractList are there for convenience when
implementing the Set and List interfaces, respectively. They have almost no methods
beyond those in the interfaces they implement. A list of the methods in these two
abstract classes is given in Appendix 4. Although these two abstract classes have only a
few abstract methods, the other (nonabstract) methods have fairly useless implementa-
tions that must be overridden. When defining a derived class of either AbstractSet or
AbstractList, you need to define not just the abstract methods but also all the meth-
ods you intend to use. It usually makes more sense to simply use (or define derived
classes of) the HashSet or Vector classes, which are derived classes of AbstractSet and
AbstractList, respectively, and are full implementations of the Set and List inter-
faces, respectively.

AbstractSet
AbstractList

classes

5640_ch15.fm Page 764 Wednesday, February 11, 2004 2:47 PM

Collections 765

The abstract class AbstractCollection is a skeleton class for the Collection inter-
face. Although it is perfectly legal, you seldom, if ever, need to define a derived class of
the AbstractCollection class. Instead, you normally define a derived class of one of
the descendent classes of the AbstractCollection class. A list of the methods in
AbstractCollection is given in Appendix 4.

If you want a class that implements the Set interface and do not need any methods
beyond those in the Set interface, you can use the concrete class HashSet. So, after all is
said and done, if all you need is a collection class that does not allow elements to occur
more than once, then you can use the HashSet class and need not worry about all the
other classes and interfaces in Display 15.4. The word “Hash” refers to the fact that the
HashSet class is implemented using a hash table. We do not cover hash tables in this
text, but since this is just part of the implementation of the class HashSet, you do not
need to know anything about hash tables to use the class HashSet. The HashSet, of
course, implements all the methods in the Set interface (Display 15.6) and it adds no
other methods beyond constructors. A summary of the HashSet constructors and other
methods is given in Display 15.8. If you want to define your own class that implements
the Set interface, you would probably be better off using the HashSet class rather than
the AbstractSet class as a base class.

Similarly, if you want a class that implements the List interface and do not need
any methods beyond those in the List interface, you can use the Vector class. So, after
all is said and done, if all you need is a collection class that does allow elements to occur
more than once, or you need a collection that orders its elements as on a list (that is, as
in an array), or you need a class that has both of these properties, then you can use the
Vector class and need not worry about all the other classes and interfaces in Display
15.3. The Vector class implements all the methods in the List interface. A table of
methods for the vector class is given in Display 15.2. A more complete list of the meth-
ods in the Vector class is given in Appendix 4. If you want to define your own class that
implements the List interface, you would probably be better off using the Vector class
rather than the AbstractList class as a base class.

The abstract class AbstractSequentialList is derived from the AbstractList class.
Although it does override some methods inherited from the class AbstractList, it adds
no completely new methods. The point of the AbstractSequentialList class is that it
provides for efficient implementation of sequentially moving through the list at the
expense of having inefficient implementation of random access to elements (that is,
inefficient implementation of the get method). The LinkedList class is a concrete
derived class of the abstract class AbstractSequentialList. The implementation of the
LinkedList class is similar to that of the linked list classes we discussed in Chapter 14.
If you need a List with efficient random access to elements (that is, efficient imple-
mentation of the get method), then use the Vector class or a class derived from the
Vector class. If you do not need efficient random access but need to efficiently move
sequentially through the list, then use the LinkedList class or a class derived from the
LinkedList class.

Abstract-
Collection

HashSet

Vector

Abstract-
Sequential-
List

LinkedList

5640_ch15.fm Page 765 Wednesday, February 11, 2004 2:47 PM

766 Chapter 15 Collections and Iterators

Self-Test Exercises

The interface SortedSet and the concrete class TreeSet are designed for implemen-
tations of the Set interface that provide for rapid retrieval of elements (efficient imple-
mentation of the contains and similar methods). The implementation of the class is
similar to the binary tree class discussed in Chapter 14 but with more sophisticated
ways to do inserting that keep the tree balanced. We will not discuss the SortedSet
interface or the TreeSet class in this text, but you should be aware of their existence so
you know what to look for in the Java documentation should you need them.

16. Can an object that instantiates the HashSet class contain multiple copies of some element?

17. Suppose you want to define a class that orders its elements like a List but does not allow
multiple occurrences of an element like a Set. Would it be better to make it a derived class
of the Vector class or a derived class of the HashSet class?

Display 15.8 Methods in the HashSet Class

The HashSet class is in the java.util package.

The HashSet class extends the AbstractSet class and implements the Set interface.

The HashSet class implements all of the methods in the Set interface (Display 15.6). The only other meth-
ods in the HashSet class are the constructors. The two constructors that do not involve concepts beyond
the scope of this book are given below.

All the exception classes mentioned are the kind that are not required to be caught in a catch block or
declared in a throws clause.

All the exception classes mentioned are in the package java.lang and so do not require any import
statement.

public HashSet()

Creates a new, empty set.

public HashSet(Collection c)

Creates a new set that contains all the elements of c.

Throws a NullPointerException if c is null.

public HashSet(int initialCapacity)

Creates a new, empty set with the specified capacity.

Throws an IllegalArgumentException if initialCapacity is less than zero.

The methods are the same as those described for the Set interface (Display 15.6).

SortedSet
TreeSet

5640_ch15.fm Page 766 Wednesday, February 11, 2004 2:47 PM

Iterators 767

■ A PEEK AT THE MAP FRAMEWORK ✜

The Java map framework is similar in character to the collection framework, but it
deals with collections of ordered pairs. Objects in the map framework can implement
mathematical functions and relations and so can be used to construct database classes.
Think of the pair as consisting of a key (to search for) and an associated value. For
example, the key might be a social security number and the value might be the salary of
the person with that social security number. We will not discuss the map framework in
this text, but you should be aware of its existence so you know what to look for in the
Java documentation should you need it. Look for the Map interface and the Abstract-
Map class and classes derived from the AbstractMap class.

Iterators
The White Rabbit put on his spectacles. “Where shall I begin,
please your Majesty?” he asked.
“Begin at the beginning,” the King said, very gravely, “And go
on till you come to the end: then stop.”

Lewis Carroll, Alice in Wonderland

An iterator is an object that is used with a collection to provide sequential access to the
elements in the collection. In Section 15.1 we gave you a brief introduction to iterators
used with vectors. In this section we present a more detailed and more general discus-
sion of iterators.

■ THE ITERATOR CONCEPT

In the next subsection we will discuss the Java Iterator interface, but before that let’s
consider the intuitive idea of an iterator. An iterator is something that allows you to
examine and possibly modify the elements in a collection in some sequential order. So,
an iterator imposes an ordering on the elements of a collection even if the collection,
such as the class HashSet, does not impose any order on the elements it contains.

Something that is not an object—and thus not, strictly speaking, a Java Iterator—
but that satisfies the intuitive idea of an iterator is an int variable i used with an array
a. This iterator i can be made to start out at the first array as follows:

i = 0;

The iterator can give you the current element; the current element is simply a[i]. The
iterator can go to the next element and give you the next element as follows:

i++;
“Gives you a[i]”

The concept of an iterator is simple but powerful enough to be used frequently.

map

15.3

iterator

5640_ch15.fm Page 767 Wednesday, February 11, 2004 2:47 PM

768 Chapter 15 Collections and Iterators

■ THE Iterator INTERFACE

Java formalizes the concept of an iterator with the Iterator interface. Any object of
any class that satisfies the Iterator interface is an Iterator. So, an array index is not a
Java Iterator. However, the index could be an instance variable in an object of an
Iterator class.

An Iterator does not stand on its own. It must be associated with some collection
object. How is the association accomplished? In Java, any class that satisfies the Col-
lection interface must have a method, named iterator(), that returns an Iterator.
To make things concrete, let’s say c is an instance of the HashSet collection class. You
can obtain an iterator for c as follows:

Iterator iteratorForC = c.iterator();

You may not know what class the iteratorForC is an instance of, but you do know
it satisfies the Iterator interface and so you know it has the methods in the Iterator
interface. These methods are given in Display 15.9.

Display 15.10 contains a simple demonstration of using an iterator with a HashSet
object. A HashSet object imposes no order on the elements in the HashSet object, but the
iterator imposes an ordering on the elements, namely the order in which they are produced

Display 15.9 Methods in the Iterator Interface

The Iterator interface is in the java.util package.

All the exception classes mentioned are the kind that are not required to be caught in a catch block or
declared in a throws clause.

NoSuchElementException is in the java.util package, which requires an import statement if your
code mentions the NoSuchElementException class. All the other exception classes mentioned are in
the package java.lang and so do not require any import statement.

public Object next()

Returns the next element of the collection that produced the iterator.

Throws a NoSuchElementException if there is no next element.

public boolean hasNext()

Returns true if next() has not yet returned all the elements in the collection; returns false otherwise.

public void remove() (Optional)

Removes from the collection the last element returned by next.

This method can be called only once per call to next.

Throws IllegalStateException if the next method has not yet been called, or the remove method
has already been called after the last call to the next method.

Throws an UnsupportedOperationException if the remove operation is not supported by this
Iterator.

Iterator
interface

5640_ch15.fm Page 768 Wednesday, February 11, 2004 2:47 PM

Iterators 769

Display 15.10 An Iterator

1 import java.util.HashSet;
2 import java.util.Iterator;

3 public class HashSetIteratorDemo
4 {
5 public static void main(String[] args)
6 {
7 HashSet s = new HashSet();

8 s.add("health");
9 s.add("love");

10 s.add("money");

11 System.out.println("The set contains:");

12 Iterator i = s.iterator();
13 while (i.hasNext())
14 System.out.println(i.next());

15 i.remove();

16 System.out.println();
17 System.out.println("The set now contains:");

18 i = s.iterator();
19 while (i.hasNext())
20 System.out.println(i.next());

21 System.out.println("End of program.");
22 }
23 }

SAMPLE DIALOGUE

The set contains:
money
love
health

The set now contains:
money
love
End of program.

The HashSet object does not order the
elements it contains, but the iterator imposes
an order on the elements. (It would not be
illegal if the elements were listed in a different
order on your computer, but it would be
unexpected.)

5640_ch15.fm Page 769 Wednesday, February 11, 2004 2:47 PM

codes769.html

770 Chapter 15 Collections and Iterators

by next(). There are no requirements on this ordering. It is likely that if you run the pro-
gram in Display 15.10 twice, the order of the elements output will be the same each time.
However, it would not be an error if they were output in different orders each time the
program is run.

If the collection used with an Iterator imposes an ordering on its elements, such as
a vector does, then the Iterator will output the elements in that order. See Display
15.3 for an example of this.

■ LIST ITERATORS

The collection framework has two iterator interfaces: the Iterator interface, which
you have already seen and that works with any collection class that implements the
Collection interface, and the ListIterator interface, which is designed to work with
collections that satisfy the List interface. A ListIterator has all the methods that an
Iterator has plus more methods that provide two new abilities: A ListIterator can
move in either direction along the list of elements in the collection, and a ListItera-
tor has methods, such as set and add, that can be used to change the elements in the
collection. The methods for the ListIterator interface are given in Display 15.11.

The general idea of next and previous is clear, but we need to make it precise if you
are to understand the next() and previous() methods of the ListIterator interface.
Every ListIterator has a position marker in the list known as the cursor. If the list has
n elements, they are numbered by indices 0 through n−1, but there are n+1 cursor posi-
tions, as indicated in Display 15.12. When next() is invoked, the element immedi-
ately following the cursor position is returned and the cursor is moved to the next
cursor position. When previous() is invoked, the element immediately before the cur-
sor position is returned and the cursor is moved back to the proceeding cursor position.

ITERATORS

An iterator is something that allows you to examine and possibly modify the elements in a collec-
tion in some sequential order. Java formalizes this concept with the two interfaces Iterator and
ListIterator.

THE ListIterator INTERFACE

The ListIterator interface differs from the Iterator interface by adding the following abili-
ties: A ListIterator can move in either direction along the list of elements in the collection,
and a ListIterator has methods, such as set and add, that can be used to change the ele-
ments in the collection.

ListIterator

cursor

5640_ch15.fm Page 770 Wednesday, February 11, 2004 2:47 PM

Iterators 771

Display 15.11 Methods in the ListIterator Interface (Part 1 of 2)

The ListIterator interface is in the java.util package.

The cursor position is explained in the text and in Display 15.12.

All the exception classes mentioned are the kind that are not required to be caught in a catch block or
declared in a throws clause.

NoSuchElementException is in the java.util package, which requires an import statement if your
code mentions the NoSuchElementException class. All the other exception classes mentioned are in
the package java.lang and so do not require any import statement.

public Object next()

Returns the next element of the list that produced the iterator. More specifically, returns the element
immediately after the cursor position.

Throws a NoSuchElementException if there is no next element.

public Object previous()

Returns the previous element of the list that produced the iterator. More specifically, returns the element
immediately before the cursor position

Throws a NoSuchElementException if there is no previous element.

public boolean hasNext()

Returns true if there is a suitable element for next() to return; returns false otherwise.

public boolean hasPrevious()

Returns true if there is a suitable element for previous() to return; returns false otherwise.

public int nextIndex()

Returns the index of the element that would be returned by a call to next(). Returns the list size if the
cursor position is at the end of the list.

public int previousIndex()

Returns the index that would be returned by a call to previous(). Returns −1 if the cursor position is at
the beginning of the list.

public void add(Object newElement) (Optional)

Inserts newElement at the location of the iterator cursor (that is, before the value, if any, that would be
returned by next() and after the value, if any, that would be returned by previous()).

Cannot be used if there has been a call to add or remove since the last call to next() or previous().

Throws IllegalStateException if neither next() nor previous() has been called, or the add or
remove method has already been called after the last call to next() or previous().

Throws an UnsupportedOperationException if the remove operation is not supported by this Iterator.

Throws a ClassCastException if the class of newElement prevents it from being added.

Throws an IllegalArgumentException if some property other than the class of newElement prevents
it from being added.

5640_ch15.fm Page 771 Wednesday, February 11, 2004 2:47 PM

772 Chapter 15 Collections and Iterators

Pitfall

Display 15.11 Methods in the ListIterator Interface (Part 2 of 2)

public void remove() (Optional)

Removes from the collection the last element returned by next() or previous().

This method can be called only once per call to next() or previous().

Cannot be used if there has been a call to add or remove since the last call to next() or previous().

Throws IllegalStateException if neither next() nor previous() has been called, or the add or
remove method has already been called after the last call to next() or previous().

Throws an UnsupportedOperationException if the remove operation is not supported by this Iter-
ator.

public void set(Object newElement) (Optional)

Replaces the last element returned by next() or previous() with newElement.

Cannot be used if there has been a call to add or remove since the last call to next() or previous().

Throws an UnsupportedOperationException if the set operation is not supported by this Iterator.

Throws IllegalStateException if neither next() nor previous() has been called, or the add or
remove method has been called since the last call to next() or previous().

Throws an ClassCastException if the class of newElement prevents it from being added.

Throws an IllegalArgumentException if some property other than the class of newElement prevents
it from being added.

next CAN RETURN A REFERENCE

If i is an iterator, then i.next() returns an element of the collection that created i, but there are
two senses of “return an element.” (1) The invocation i.next() could return a copy of the element
in the collection (for example, using a copy constructor or a clone method). (2) Alternatively,

Display 15.12 ListIterator Cursor Positions

 List

 element 0 element 1 element 2 ... element n-1

 Cursor positions
 The default initial cursor position is the leftmost one.

5640_ch15.fm Page 772 Wednesday, February 11, 2004 2:47 PM

Iterators 773

Self-Test Exercises

Tip

i.next() could return a reference to the element in the collection. In case (1), modifying
i.next() will not change the element in the collection. In case (2), modifying i.next() will
change the element in the collection. The APIs for both the Iterator and ListIterator inter-
faces are vague on whether you should follow policy (1) or (2), but the iterators for the standard pre-
defined collection classes, such as Vector and HashSet, return references. So, you can modify the
elements in the collection by using mutator methods on i.next(). This is illustrated in Display
15.13. The comments we made about i.next() also apply to i.previous().

The fact that next and previous return references to elements in the collection is not necessar-
ily bad news. It means you must be careful, but it also means you can cycle through all the ele-
ments in the collection and perform some processing that might modify the elements. For
example, if the elements in the collection are records of some sort, you can use mutator methods
to update the records.

If you read the APIs for the Iterator and ListIterator interfaces, they say that a ListIt-
erator can change the collection but, presumably, a plain old Iterator cannot. These API
comments do not refer to whether or not a reference is returned by i.next(). They simply
refer to the fact that the ListIterator interface has a set method while the Iterator
interface does not have a set method. Do not confuse this with the point discussed in the pre-
vious paragraph.

DEFINING YOUR OWN ITERATOR CLASSES

There really is little need to define your own Iterator or ListIterator classes. The most
common and easiest way to define a collection class is to make it a derived class of one of the
library collection classes, such as Vector or HashSet. When you do that, you automatically
get the method iterator(), and if need be the method listIterator(), and that takes
care of iterators. However, if you should need to define a collection class in some other way,
then the best way to define your iterator class or classes is to define them as inner classes of
your collection class.

18. Does a HashSet have a method to produce a ListIterator? Does Vector have a method
to produce a ListIterator?

19. Suppose i is a ListIterator will an invocation of i.next() followed by i.previous()
return the same element før each of the two invocations or might they return two different
elements? What about i.previous() followed by i.next()?

5640_ch15.fm Page 773 Wednesday, February 11, 2004 2:47 PM

774 Chapter 15 Collections and Iterators

Display 15.13 An Iterator Returns a Reference (Part 1 of 2)

1 import java.util.Vector;
2 import java.util.Iterator;

3 public class IteratorReferenceDemo
4 {
5 public static void main(String[] args)
6 {
7 Vector birthdays = new Vector();

8 birthdays.add(new Date(1, 1, 1990));
9 birthdays.add(new Date(2, 2, 1990));

10 birthdays.add(new Date(3, 3, 1990));

11 System.out.println("The vector contains:");

12 Iterator i = birthdays.iterator();
13 while (i.hasNext())
14 System.out.println(i.next());

15 i = birthdays.iterator();
16 Date d = null; //To keep the compiler happy.
17 System.out.println("Changing the references.");
18 while (i.hasNext())
19 {
20 d = (Date)i.next();
21 d.setDate(4, 1, 1990);
22 }

23 System.out.println("The vector now contains:");

24 i = birthdays.iterator();
25 while (i.hasNext())
26 System.out.println(i.next());

27 System.out.println("April fool!");
28 }
29 }

The class Date is defined in Display 4.11, but you can easily
guess all you need to know about Date for this example.

5640_ch15.fm Page 774 Wednesday, February 11, 2004 2:47 PM

codes774.html

Answers to Self-Test Exercises 775

■ Vectors can be thought of as arrays that grow and shrink in length.

■ The base type of a vector is always Object. Therefore, a vector may contain objects
of any class but may not contain values of a primitive type.

■ The main collection interfaces are Collection, Set, and List. The Set and List
interfaces extend the Collection interface. The library classes that are standard to
use and that implement these interfaces are HashSet, which implements the Set
interface, and Vector, which implements the List interface.

■ A Set does not allow repeated elements and does not order its elements. A List
allows repeated elements and orders its elements.

■ An iterator is something that allows you to examine and possibly modify the ele-
ments in a collection in some sequential order. Java formalizes this concept with the
two interfaces Iterator and ListIterator.

■ An Iterator (with only the required methods implemented) goes through the ele-
ments of the collection in only one direction, from the beginning to the end. A
ListIterator can move through the collection list in both directions, forward and
back. A ListIterator has a set method; the Iterator interface does not require a
set method.

ANSWERS TO SELF-TEST EXERCISES

1. v.add("Hello");

2. v.set(10, "Good-bye");

Chapter Summary

Display 15.13 An Iterator Returns a Reference (Part 2 of 2)

SAMPLE DIALOGUE

The vector contains:
Jan 1, 1990
Feb 2, 1990
Mar 3, 1990
Changing the references.
The vector now contains:
Apr 1, 1990
Apr 1, 1990
Apr 1, 1990
April fool!

5640_ch15.fm Page 775 Wednesday, February 11, 2004 2:47 PM

776 Chapter 15 Collections and Iterators

3. No. The index for set must be greater than or equal to 0 and less than the size of the vec-
tor. Thus, you can replace any existing element, but you cannot place the element at any
higher index. This is unlike an array. If an array is partially filled to index 10, you can add
an element at index 20, as long as the array is that large. With a vector, you cannot add an
element to a new unused position (except that methods other than set will let you add one
in the first unused position).

4. The index for the two-argument version of add must be greater than or equal to 0 and
less than or equal to the size of the vector. Thus, you can add an element at position
v.size() of a vector v with the method add but you cannot add it at v.size() with
the method set.

5. Yes. The vector can contain more than 50 elements. The number 50 used as an argument
to the constructor merely gives the initial memory allocation for the vector. More memory
is automatically allocated when it is needed.

6. int index;
for (index = 0; index < v.size(); index++)
 System.out.println(v.get(index));

7. The following code is in the file StringSelectionSort.java and a demonstration pro-
gram is in the file StringSelectionSortDemo.java on the accompanying CD.

import java.util.Vector;

/**
 Class for sorting a vector of Strings lexicographically
*/
public class StringSelectionSort
{

 /**
 Sorts the vector a so that v.get(0), v.get(1),...
 v.get(a.size() − 1) are in lexicographic order.
 Assumes the vector contains only Strings.
 */
 public static void sort(Vector v)
 {
 int index, indexOfNextSmallest;
 for (index = 0; index < v.size() − 1; index++)
 {//Place the correct value in position index:
 indexOfNextSmallest =
 indexOfSmallest(index, v);
 interchange(index,indexOfNextSmallest, v);
 //v.get(0), v.get(1),...,
 //v.get(index) are sorted. The rest of
 //the elements are in the remaining positions.
 }
 }

extra code on CD

5640_ch15.fm Page 776 Wednesday, February 11, 2004 2:47 PM

Answers to Self-Test Exercises 777

 /**
 Precondition: i and j are legal indices for the vector a.
 Postcondition: The values of v.get(i) and
 v.get(j) have been interchanged.
 */
 private static void interchange(
 int i, int j, Vector v)
 {
 Object temp;
 temp = v.get(i);
 v.set(i, v.get(j));
 v.set(j, temp);
 }

 /**
 Returns the index of the lexicographically first value among
 v.get(startIndex), v.get(startIndex+1),...,
 v.get(v.size() − 1)
 */
 private static int indexOfSmallest(
 int startIndex, Vector v)
 {
 String min = (String)v.get(startIndex);
 int indexOfMin = startIndex;
 int index;
 for (index = startIndex + 1;
 index < v.size(); index++)
 if (((String)(v.get(index))).compareTo(min) < 0)
 {
 min = (String)v.get(index);
 indexOfMin = index;
 }
 return indexOfMin;
 }
}

8. Object

9. No, you can only store objects in a vector. You cannot store values of any primitive type.
(You could store the int value by embedding it an Integer object and storing the Inte-
ger object in the vector. So, the answer depends a little on how you interpret the question.)

10. The method invocation v.size() returns the number of elements in the vector v. The
method invocation v.capacity() returns the number of elements for which the vector
currently has memory allocated.

11. The new elements at indices 10 through 19 will have null for their values.

12. /**

5640_ch15.fm Page 777 Wednesday, February 11, 2004 2:47 PM

778 Chapter 15 Collections and Iterators

 Returns the lexicographically first value among
 v.get(0), v.get(1),..., v.get(v.size() − 1)
 Precondition: v contains only Strings; v.size() > 0.
*/
private static String smallest(Vector v)
{
 Iterator vIterator = v.iterator();
 String min = (String)vIterator.next();
 String nextElement;
 while (vIterator.hasNext())
 {
 nextElement = (String)vIterator.next();
 if (nextElement.compareTo(min) < 0)
 min = nextElement;
 }

 return min;
}

13. public static boolean inSome(Object target,
 Collection c1, Collection c2)
{
 return (c1.contains(target) || c2.contains(target));
}

14. public static Object getFirst(List aList)
{
 if (aList.isEmpty())
 return null;
 else
 return aList.get(0);
}

15. public static boolean noNull(Set s)
{
 return (s.remove(null));
}

16. No.

17. It would make more sense to make it a derived class of the Vector class. Then the elements
are ordered. You can ensure against repeated elements by redefining all methods that add
elements so that the methods check to see if the element is already in the class before enter-
ing it. A derived class of the HashSet class would automatically ensure that no element is
repeated but it would seem to take a good deal of work to maintain the elements in order.

18. A HashSet does not. A Vector does.

19. The answer to both questions is the same: They will return the same element.

5640_ch15.fm Page 778 Wednesday, February 11, 2004 2:47 PM

Programming Projects 779

PROGRAMMING PROJECTS

1. Redo Programming Project 6 in Chapter 6, but this time do it for a vector of strings to be
sorted into lexicographic order.

2. Define a class called StringVector which is to be a like the Vector class but it enforces
the constraint that all elements in the collection are objects of the class String. Make your
StringVector class a derived class of the Vector class. Also write a suitable test program.

3. Define a class called IntegerSet that is just like the class HashSet except that it stores val-
ues of type int. Objects of your class IntegerSet will have an instance variable of type
HashSet that it uses to hold values of the wrapper class Integer. The instance variable of
type HashSet is really the heart and soul of your IntegerSet class. All your methods do
little more than invoke the methods of this HashSet, but they need to convert int values
to their corresponding Integer object and vice versa. Also write a suitable test program.

5640_ch15.fm Page 779 Wednesday, February 11, 2004 2:47 PM

project779a.html
project779b.html
project779c.html
project779d.html

	Untitled

	code links 1:
	Text: For additional online Programming Projects, click the CodeMate icons below.
	Text3: 15.4
	Text4: 15.5
	code links 2:
	code links 3:
	code links 4:
	program project 15:
	1:
	2:
	4:

