

CHAPTER

14

Linked Data Structures

14.1 JAVA LINKED LISTS 679

Example: A Simple Linked List Class 680

Pitfall: Privacy Leaks 689

Node Inner Classes 689

Example: A Generic Linked List 693

Pitfall: The

clone Method Is Protected in

Object
699

Tip: Deep Copy versus Shallow Copy 703

Exceptions 703

Iterators 704

Adding and Deleting Nodes 709

Immutable Iterators 711

Variations on a Linked List 715

The Stack Data Structure 715

14.2 TREES 716

Tree Properties 717

Example: A Binary Search Tree Class

✜ 720

Efficiency of Binary Search Trees

✜ 724

CHAPTER SUMMARY 725
ANSWERS TO SELF-TEST EXERCISES 726
PROGRAMMING PROJECTS 728

5640_ch14.fm Page 677 Wednesday, February 11, 2004 2:44 PM

14

Linked Data Structures

If somebody there chanced to be
Who loved me in a manner true
My heart would point him out to me
And I would point him out to you.

Gilbert and Sullivan,

Ruddigore

INTRODUCTION

A linked data structure

 consists of capsules of data known as nodes

 that are
connected via links

 that can be viewed as arrows. The simplest kind of linked
data structure consists of a single chain of nodes, each connected to the next
by a link; this is known as a linked list

. A sample linked list can be depicted as
shown in Display 14.1. In Display 14.1 the nodes are represented by boxes
that can each hold two kinds of data, a string and an integer, as in a shopping
list. The links are depicted as arrows, which reflects the fact that your code
must traverse the linked list in one direction without backing up. So, there is a
first node, a second node, and so on up to the last node. The first node is
called the head

node. The last node must be able to serve as a kind of end
marker. Your code must be able to tell when it has reached the last node.

That’s all very vague but is the general picture of what is going on in a
linked list. It becomes concrete when you realize a linked list in some pro-
gramming language. In Java, the nodes are realized as objects of a node class.
The data in a node is stored via instance variables. The links are realized as ref-
erences. Recall that a reference is simply a memory address. A reference is
what is stored in a variable of a class type. So, the link is realized as an instance
variable of the type of the node class itself. In Java, a node in a linked list is
connected to the next node by having an instance variable of the node type
contain a reference (that is, memory address) of where in memory the next
node is stored.

Java comes with a

LinkedList

 library class as part of the

java.util

 pack-
age. It makes sense to use this library class, since it is well designed, well tested,
and will save you a lot of work. However, using the library class will not teach
you how to implement linked data structures in Java. To do that, you need to
see an implementation of a simple linked data structure, such as a linked list.
So, to let you see how this sort of thing is done in Java, we will construct our
own simplified example of a linked list.

After discussing linked lists we then go on to discuss

trees,

 a more elaborate
linked data structure.

nodes and link

linked list

5640_ch14.fm Page 678 Wednesday, February 11, 2004 2:44 PM

Java Linked Lists 679

PREREQUISITES

If you prefer, you may skip this chapter and go directly to Chapter 15 on vectors and
collection classes or you may go directly to Chapter 16 to begin your study of window-
ing interfaces using the Swing library. You have a good deal of flexibility in how you
order the later chapters of this book.

Section 14.1 on linked lists requires material from Chapters 1 through 5, simple
uses of inner classes (Section 13.2 of Chapter 13), cloning (Section 13.1 of Chapter
13), and simple use of exceptions (Chapter 9). Section 14.2 requires all of this plus Sec-
tion 14.1 and Chapter 11 on recursion.

Java Linked Lists

A chain is only as strong as its weakest link.

Proverb

A linked list

 is a linked data structure consisting of a single chain of nodes, each con-
nected to the next by a link. This is the simplest kind of linked data structure, but it is

Display 14.1 Nodes and Links in a Linked List

head
"rolls"

10

"jam"

3

"milk"

1

"tea"

2

end marker

14.1

linked list

5640_ch14.fm Page 679 Wednesday, February 11, 2004 2:44 PM

680 Chapter 14 Linked Data Structures

Example

nevertheless widely used. In this section we give examples of and develop techniques
for working with linked lists in Java.

A SIMPLE LINKED LIST CLASS

Display 14.1 is a diagram of a linked list. In the display the nodes are the boxes. In your Java code,
a node is an object of some node class, such as the class

Node1 given in Display 14.2. Each node
has a place (or places) for some data and a place to hold a link to another node. The links are
shown as arrows that point to the node they “link” to. In Java, the links will be implemented as
references to a node stored in an instance variable of the node type.

The

Node1 class is defined by specifying, among other things, an instance variable of type

Node1 that is named

link. This allows each node to store a reference to another node of the same
type. There is a kind of circularity in such definitions, but this circularity is allowed in Java. (One
way to see that this definition is not logically inconsistent is to note that we can draw pictures, or
even build physical models, of our linked

Nodes.)

The first node, or start node, in a linked list is called the head node. If you start at the head node,
you can traverse the entire linked list, visiting each node exactly once. As you will see in Java code
shortly, your code must intuitively “follow the link arrows.” In Display 14.1 the box labeled

head is
not itself the head node; it is not even a node. The box labeled

head is a variable of type

Node1
that contains a reference to the first node in the linked list—that is, a reference to the head node.
The node

head is not itself the head of the linked list, but contains a reference to the head node
(that is, to the first node). The function of the variable

head is that it allows your code to find that
first or head node. The variable

head is declared in the obvious way:

Node1 head;

In Java, a linked list is an object that in some sense contains all the nodes of the linked list. Display
14.3 contains a definition of a linked list class for a linked list like the one in Display 14.1. Notice
that a linked list object does not directly contain all the nodes in the linked list. It only contains
the instance variable

head that contains a reference to the first or head node. However, every
node can be reached from this first or head node. The

link instance variable of the first and
every

Node1 of the linked list contains a reference to the next

Node1 in the linked list. Thus, the
arrows shown in the diagram in Display 14.1 are realized as references in Java. Each node object of
a linked list contains (in its

link instance variable) a reference to another object of the class

Node1, and this other object contains a reference to another object of the class

Node1, and so on
until the end of the linked list. Thus, a linked list object, indirectly at least, contains all the nodes
in the linked list.

When dealing with a linked list, your code needs to be able to “get to” that first or head node,
and you need some way to detect when the last node is reached. To get your code to the first
node, you use a variable of type

Node1 that always contains a reference to the first node. In Dis-
play 14.3, the variable with a reference to the first node is named

head. From that first or head
node your code can follow the links through the linked list. But how does your code know when it
is at the last node in a linked list?

link

Node

head node

head

5640_ch14.fm Page 680 Wednesday, February 11, 2004 2:44 PM

Java Linked Lists 681

Display 14.2 A Node Class

public class Node1
{
 private String item;
 private int count;
 private Node1 link;

 public Node1()
 {
 link = null;
 item = null;
 count = 0;
 }

 public Node1(String newItem, int newCount, Node1 linkValue)
 {
 setData(newItem, newCount);
 link = linkValue;
 }

 public void setData(String newItem, int newCount)
 {
 item = newItem;
 count = newCount;
 }

 public void setLink(Node1 newLink)
 {
 link = newLink;
 }

 public String getItem()
 {
 return item;
 }

 public int getCount()
 {
 return count;
 }

 public Node1 getLink()
 {
 return link;
 }
}

We will give a better definition of a
node class later in this chapter.

A node contains a reference to another node.
That reference is the link to the next node.

We will define a number of node classes so we
numbered the names, as in Node1.

5640_ch14.fm Page 681 Tuesday, February 17, 2004 5:16 PM

codes681.html

682 Chapter 14 Linked Data Structures

Display 14.3 A Linked List Class (Part 1 of 2)

1 public class LinkedList1
2 {
3 private Node1 head;
4
5 public LinkedList1()
6 {
7 head = null;
8 }

9 /**
10 Adds a node at the start of the list with the specified data.
11 The added node will be the first node in the list.
12 */
13 public void add(String itemName, int itemCount)
14 {
15 head = new Node1(itemName, itemCount, head);
16 }

17 /**
18 Removes the head node and returns true if the list contains at least
19 one node. Returns false if the list is empty.
20 */
21 public boolean deleteHeadNode()
22 {
23 if (head != null)
24 {
25 head = head.getLink();
26 return true;
27 }
28 else
29 return false;
30 }

31 /**
32 Returns the number of nodes in the list.
33 */
34 public int size()
35 {
36 int count = 0;
37 Node1 position = head;
38

We will define a better linked list
class later in this chapter.

5640_ch14.fm Page 682 Tuesday, February 17, 2004 5:36 PM

codes682.html

Java Linked Lists 683

Display 14.3 A Linked List Class (Part 2 of 2)

39 while (position != null)
40 {
41 count++;
42 position = position.getLink();
43 }
44 return count;
45 }

46 public boolean contains(String item)
47 {
48 return (find(item) != null);
49 }

50 /**
51 Finds the first node containing the target item, and returns a
52 reference to that node. If target is not in the list, null is returned.
53 */
54 private Node1 find(String target)
55 {
56 Node1 position = head;
57 String itemAtPosition;
58 while (position != null)
59 {
60 itemAtPosition = position.getItem();
61 if (itemAtPosition.equals(target))
62 return position;
63 position = position.getLink();
64 }
65 return null; //target was not found
66 }

67 public void outputList()
68 {
69 Node1 position = head;
70 while (position != null)
71 {
72 System.out.println(position.getItem() + " "
73 + position.getCount());
74 position = position.getLink();
75 }
76 }
77 }

This is the way you traverse
an entire linked list.

The last node is indicated by the link
field being equal to null.

5640_ch14.fm Page 683 Wednesday, February 11, 2004 2:44 PM

684 Chapter 14 Linked Data Structures

 In Java, you indicate the end of a linked list by setting the

link

 instance variable of
the last node in the linked list to

null

, as shown in Display 14.4. That way your code
can test whether or not a node is the last node in a linked list by testing whether its

link

 instance variable contains

null

. Remember that you check for a

link

 being
“equal” to

null

 by using

==

, not any

equals

 method.

You also use

null

 to indicate an empty linked list. The

head

 instance variable con-
tains a reference to the first node in the linked list, or it contains

null

 if the linked list
is empty (that is, if the linked list contains no nodes). The one constructor sets this

head

 instance variable to

null

, indicating that a newly created linked list is empty.

INDICATING THE END OF A LINKED LIST

The last node in a linked list should have its

link instance variable set to

null. That way, your
code can check whether a node is the last node by checking whether its

link instance variable is
equal to

null.

Display 14.4 Traversing a Linked List

This reference is
 position.getLink().

When position is at this last node,
position.getLink() == null.

head
"rolls"

10

"jam"

3

"milk"

1

"tea"

2

null

position

empty list

5640_ch14.fm Page 684 Tuesday, February 17, 2004 5:16 PM

Java Linked Lists 685

Before we go on to discuss how nodes are added and removed from a linked list, let’s
suppose that the linked list already has a few nodes, and that you want to write out the
contents of all the nodes to the screen. You can do this with the method outputList
(Display 14.3), whose body is reproduced here:

Node1 position = head;
while (position != null)
{
 System.out.println(position.getItem() + " "
 + position.getCount());
 position = position.getLink();
}

The method uses a local variable named position that contains a reference to one
node. The variable position starts out with the same reference as the head instance
variable, so it starts out positioned at the first node. The position variable then has its
position moved from one node to the next with the assignment

position = position.getLink();

This is illustrated in Display 14.4. To see that this assignment “moves” the position
variable to the next node, note that the position variable contains a reference to the
node pointed to by the position arrow in Display 14.4. So, position is a name for
that node, and position.link is a name for the link to the next node. The value of
link is produced with the accessor method getLink. Thus, a reference to the next node
in the linked list is position.getLink(). You “move” the position variable by giving it
the value of position.getLink().

The method outputList continues to move the position variable down the linked
list and outputs the data in each node as it goes along. When position reaches the last
node, it outputs the data in that node and then again executes

position = position.getLink();

If you study Display 14.4, you will see that when position leaves the last node, its
value is set to null. At that point, we want to stop the loop, so we iterate the loop
while (position != null).

A similar technique is used to traverse the linked list in the methods size and find.

 AN EMPTY LIST IS INDICATED BY null

Suppose the variable head is supposed to contain a reference to the first node in a linked list.
Linked lists usually start out empty. To indicate an empty linked list, you give the variable head
the value null. This is traditional and it works out nicely for many linked list manipulation
algorithms.

traversing a
linked list

5640_ch14.fm Page 685 Wednesday, February 11, 2004 2:44 PM

686 Chapter 14 Linked Data Structures

Self-Test Exercises

Next let’s consider how the method add adds a node to the start of the linked list, so that
the new node becomes the first node in the list. It does this with the single statement

head = new Node1(itemName, itemCount, head);

The new node is created with

new Node1(itemName, itemCount, head)

which returns a reference to this new node. In other words, the variable head is set
equal to a reference to this new node, making the new node the first node in the linked
list. To link this new node to the rest of the list, we need only set the link instance vari-
able of the new node equal to a reference to the old first node. But we have already done
that: head used to point to the old first node, so if we use the name head on the right-
hand side of an assignment operator, head will denote a reference to the old first node.
Therefore, the new node produced by

new Node1(itemName, itemCount, head)

points to the old first node, which is just what we wanted. This is illustrated in Display
14.5.

Later, we will discuss adding nodes at other places in a linked list, but the easiest
place to add a node is at the start of the list. Similarly, the easiest place to delete a node
is at the start of the linked list.

The method deleteHeadNode removes the first node from the linked list and leaves
the head variable pointing to (that is, containing a reference to) the old second node
(which is now the first node) in the linked list. This is done with the following assign-
ment:

head = head.getLink();

This removes the first node from the linked list and leaves the linked list one node
shorter, but what happens to the deleted node? At some point, Java will automatically
collect it, along with any other nodes that are no longer accessible, and recycle the
memory they occupy. This is known as automatic garbage collection.

Display 14.6 contains a simple program that demonstrates how some of the meth-
ods in the class LinkedList1 behave.

1. What output is produced by the following code?

LinkedList1 list = new LinkedList1();
list.add("apple pie", 1);
list.add("hot dogs", 12);
list.add("mustard", 1);

adding a node

removing a node

garbage collection

5640_ch14.fm Page 686 Wednesday, February 11, 2004 2:44 PM

Java Linked Lists 687

Display 14.5 Adding a Node at the Start

head = new Node("beer", 6, head)
moves head to the new node.

"rolls"

10

"jam"

3

"milk"

1

"tea"

2

null

head

new Node("beer", 6, head)
creates this node and positions it here.

"beer"

6

Display 14.6 A Linked List Demonstration (Part 1 of 2)

1 public class LinkedList1Demo
2 {
3 public static void main(String[] args)
4 {
5 LinkedList1 list = new LinkedList1();
6 list.add("Apples", 1);
7 list.add("Bananas", 2);
8 list.add("Cantaloupe", 3);
9 System.out.println("List has " + list.size()

10 + " nodes.");
11 list.outputList();

Cantaloupe is now in the head node.

5640_ch14.fm Page 687 Wednesday, February 11, 2004 2:44 PM

codes687.html

688 Chapter 14 Linked Data Structures

list.outputList();

2. Define a boolean valued method named isEmpty that can be added to the class
LinkedList1 (Display 14.3). The method returns true if the list is empty and false if
the list has at least one node in it.

3. Define a void method named clear that can be added to the class LinkedList1 (Display
14.3). The method has no parameters and it empties the list.

Display 14.6 A Linked List Demonstration (Part 2 of 2)

12 if (list.contains("Cantaloupe"))
13 System.out.println("Cantaloupe is on list.");
14 else
15 System.out.println("Cantaloupe is NOT on list.");

16 list.deleteHeadNode();

17 if (list.contains("Cantaloupe"))
18 System.out.println("Cantaloupe is on list.");
19 else
20 System.out.println("Cantaloupe is NOT on list.");

21 while (list.deleteHeadNode())
22 ; //Empty loop body

23 System.out.println("Start of list:");
24 list.outputList();
25 System.out.println("End of list.");
26 }
27 }

SAMPLE DIALOGUE

List has 3 entries.
Cantaloupe 3
Bananas 2
Apples 1
Cantaloupe is on list.
Cantaloupe is NOT on list.
Start of list:
End of list.

Removes the head node.

Empties the list. There is no loop body
because the method deleteHeadNode
both performs an action on the list and
returns a Boolean value.

5640_ch14.fm Page 688 Wednesday, February 11, 2004 2:44 PM

Java Linked Lists 689

Pitfall

PRIVACY LEAKS

It may help you to understand this section if you first review the Pitfall section of the same name
in Chapter 5.

Consider the method getLink in the class Node1 (Display 14.2). It returns a value of type Node1.
That is, it returns a reference to a Node1. In Chapter 5, we said that if a method (such as
getLink) returns a reference to an instance variable of a (mutable) class type, then the private
restriction on the instance variable can easily be defeated because getting a reference to an
object may allow a programmer to change the private instance variables of the object. There are a
number of ways to fix this, the most straightforward of which is to make the class Node1 a private
inner class in the method LinkedList1, as discussed in the next subsection.

Although there is no problem with the class definition of Node1 when it is used in a class defini-
tion like LinkedList1, there is no way to guarantee that the class Node1 will be used only in
this way, unless you do something similar to making the class Node1 a private inner class in the
class LinkedList1.

 An alternate solution is to place both of the classes Node1 and LinkedList1 into a package,
and change the private instance variable restriction to the package restriction as discussed in
Chapter 7.

Note that this privacy problem can arise in any situation in which a method returns a reference to
a private instance variable of a class type. The method getItem() of the class Node1 comes very
close to having this problem. In this case, the method getItem causes no privacy leak, but only
because the class String is not a mutable class (that is, it has no methods that will allow the user
to change the value of the string without changing the reference). If instead of storing data of
type String in our list we had stored data of some mutable class type, then defining an accessor
method similarly to getItem would produce a privacy leak.

■ NODE INNER CLASSES

You can make linked lists or any similar data structures self-contained by making the
node class an inner class. In particular, you can make the class LinkedList1 more self-
contained by making Node1 an inner class, as follows:

public class LinkedList1
{
 private class Node1
 {
 <The rest of the definition of Node1 can be
 the same as in Display 14.2.>
 }

5640_ch14.fm Page 689 Wednesday, February 11, 2004 2:44 PM

690 Chapter 14 Linked Data Structures

 private Node1 head;
 <The constructor and methods in Display 14.3 are inserted here.>
}

Note that we’ve made the class Node1 a private inner class. If an inner class is not
intended to be used elsewhere, it should be made private. Making Node1 a private inner
class hides all objects of the inner class and avoids a privacy leak.

If you are going to make the class Node1 a private inner class in the definition of
LinkedList1, then you can safely simplify the definition of Node1 by eliminating the
accessor and mutator methods (the set and get methods) and just allowing direct
access to the instance variables (item, count, and link) from methods of the outer
class. In Display 14.7, we have rewritten the class LinkedList1 in this way. The rewrit-
ten version, named LinkedList2, is equivalent to the class LinkedList1 in Display 14.3
in that it has the same methods that perform the same actions.

Display 14.7 A Linked List Class with a Node Inner Class (Part 1 of 3)

1 public class LinkedList2
2 {
3 private class Node2
4 {
5 private String item;
6 private int count;
7 private Node2 link;

8 public Node2()
9 {

10 item = null;
11 count = 0;
12 link = null;
13 }

14 public Node2(String newItem, int newCount, Node2 linkValue)
15 {
16 item = newItem;
17 count = newCount;
18 link = linkValue;
19 }
20 }//End of Node2 inner class

21 private Node2 head;

22 public LinkedList2()
23 {
24 head = null;
25 }

An inner class for the node class

We have simplified this class and the previous linked
list class to keep them relatively short. These classes
should have a copy constructor, an equals method,
and a clone method. Our next linked list example
includes these items.

It makes no difference whether we make the
instance variables of Node2 public or private.

5640_ch14.fm Page 690 Wednesday, February 11, 2004 2:44 PM

codes690.html

Java Linked Lists 691

Display 14.7 A Linked List Class with a Node Inner Class (Part 2 of 3)

26 /**
27 Adds a node at the start of the list with the specified data.
28 The added node will be the first node in the list.
29 */
30 public void add(String itemName, int itemCount)
31 {
32 head = new Node2(itemName, itemCount, head);
33 }

34 /**
35 Removes the head node and returns true if the list contains at least
36 one node. Returns false if the list is empty.
37 */
38 public boolean deleteHeadNode()
39 {
40 if (head != null)
41 {
42 head = head.link;
43 return true;
44 }
45 else
46 return false;
47 }

48 /**
49 Returns the number of nodes in the list.
50 */
51 public int size()
52 {
53 int count = 0;
54 Node2 position = head;
55 while (position != null)
56 {
57 count++;
58 position = position.link;
59 }
60 return count;
61 }

62 public boolean contains(String item)
63 {
64 return (find(item) != null);
65 }

Note that the outer class has direct
access to the inner class’s instance
variables, such as link.

5640_ch14.fm Page 691 Wednesday, February 11, 2004 2:44 PM

692 Chapter 14 Linked Data Structures

NODE INNER CLASS

You can make a linked list (or other linked data structure) self-contained by making the node
class an inner class of the linked list class.

Display 14.7 A Linked List Class with a Node Inner Class (Part 3 of 3)

66 /**
67 Finds the first node containing the target item, and returns a
68 reference to that node. If target is not in the list, null is returned.
69 */
70 private Node2 find(String target)
71 {
72 Node2 position = head;
73 String itemAtPosition;
74 while (position != null)
75 {
76 itemAtPosition = position.item;
77 if (itemAtPosition.equals(target))
78 return position;
79 position = position.link;
80 }
81 return null; //target was not found
82 }

83 public void outputList()
84 {
85 Node2 position = head;
86 while (position != null)
87 {
88 System.out.println(position.item + " "
89 + position.count);
90 position = position.link;
91 }
92 }

93 public boolean isEmpty()
94 {
95 return (head == null);
96 }

97 public void clear()
98 {
99 head = null;

100 }
101 }

5640_ch14.fm Page 692 Wednesday, February 11, 2004 2:44 PM

Java Linked Lists 693

Example

Self-Test Exercises

4. Would it make any difference if we change the Node1 inner class in Display 14.7 from a
private inner class to a public inner class?

5. Keeping the inner class Node1 in Display 14.7 as private, what difference would it make if
any of the instance variables or methods in the class Node1 have its access modifiers
changed from what it is public, private, or package access?

6. Why does the definition of the inner class Node2 in Display 14.7 not have the accessor and
mutator methods getLink, setLink, or get and set methods for the data field as the
class definition of Node1 in Display 14.2 does?

7. Would it be legal to add the following method to the class LinkedList2 in Display 14.7?

public Node2 startNode()
{
 return head;
}

A GENERIC LINKED LIST

Display 14.8 shows a linked list whose Node class has a single data item of type Object. This
means that the linked list can hold objects of any class type (including the possibility of array
objects). In most other respects this linked list has the same methods, coded in basically the same
way, as our previous linked list (Display 14.7), but we have added a copy constructor, an equals
method, and a clone method, as well as a couple of private helping methods. We will discuss the
equals method first.

The equals method is defined so that two linked lists are equal if, and only if, they are of the
same size (same number of nodes) and the data in the nodes is pairwise equal: that is, the data in
the first node of the calling object equals the data in the first node of the other linked list, the data
in the two second nodes is equal, and so forth. To test if the data in two nodes is equal, the
method uses the equals method for the data in the node of the calling object. Since the data is
an object of type Object, we know it has an equals method. We are trusting the programmer
who wrote the class definition for the class of the data in the nodes. We are assuming the pro-
grammer has redefined the equals method so that it provides a reasonable test for equality. Sit-
uations like this are the reason it is so important to always include an equals method in the
classes you define.

The private helping method copyOf is used in defining both the copy constructor and the clone
method. The private method copyOf takes an argument that is a reference to the head node of a
linked list and returns a reference to the head node of a copy of that linked list. The easiest way to

equals

5640_ch14.fm Page 693 Wednesday, February 11, 2004 2:44 PM

694 Chapter 14 Linked Data Structures

Display 14.8 A Generic Linked List Class (Part 1 of 5)

1 public class GenericLinkedList implements Cloneable
2 {
3 private class Node
4 {
5 private Object data;
6 private Node link;

7 public Node()
8 {
9 data = null;

10 link = null;
11 }

12 public Node(Object newData, Node linkValue)
13 {
14 data = newData;
15 link = linkValue;
16 }
17 }//End of Node inner class

18 private Node head;

19 public GenericLinkedList()
20 {
21 head = null;
22 }

23 /**
24 Throws a NullPointerException if other is null.
25 Caution: the data in the linked lists are not cloned;
26 only a reference to the data Object is copied
27 */
28 public GenericLinkedList(GenericLinkedList otherList)
29 {
30 if (otherList == null)
31 throw new NullPointerException();
32 if (otherList.head == null)
33 head = null;
34 else
35 head = copyOf(otherList.head);
36 }

This linked list holds objects of any kind.
However, the objects should have well-defined
equals and toString methods.

A NullPointerException need not be
caught or declared in a throws clause.

Warning: This is not an ideal copy constructor. The
copy created and otherList share references to
data objects. However, as explained in the text,
this problem cannot be fixed.

5640_ch14.fm Page 694 Wednesday, February 11, 2004 2:44 PM

codes694.html

Java Linked Lists 695

Display 14.8 A Generic Linked List Class (Part 2 of 5)

37 //Precondition: otherHead != null
38 //Returns a reference to the head of a copy of the
39 //list headed by otherHead.
40 private Node copyOf(Node otherHead)
41 {
42 Node position = otherHead;//moves down other's list.
43 Node newHead; //will point to head of the copy list.
44 Node end = null; //positioned at end of new growing list.
45 //Create first node:
46 newHead = new Node(position.data, null);
47 end = newHead;
48 position = position.link;

49 while (position != null)
50 {//copy node at position to end of new list.
51 end.link = new Node(position.data, null);
52 end = end.link;
53 position = position.link;
54 }

55 return newHead;
56 }

57 public Object clone()
58 {
59 try
60 {
61 GenericLinkedList copy =
62 (GenericLinkedList)super.clone();
63 copy.head = copyOf(this.head);
64 return copy;
65 }
66 catch(CloneNotSupportedException e)
67 {//This should not happen.
68 return null; //To keep the compiler happy.
69 }
70 }

71 /**
72 Adds a node at the head of the list with the newData.
73 */
74 public void add(Object newData)
75 {
76 head = new Node(newData, head);
77 }

Warning: This is not an ideal clone method. The copy produced and
the original list (the calling object) share references to data objects.
However, as explained in the text, this problem cannot be fixed.

5640_ch14.fm Page 695 Wednesday, February 11, 2004 2:44 PM

696 Chapter 14 Linked Data Structures

Display 14.8 A Generic Linked List Class (Part 3 of 5)

78 /**
79 Removes the head node and returns true if the list contains at least
80 one node. Returns false if the list is empty.
81 */
82 public boolean deleteHeadNode()
83 {
84 if (head != null)
85 {
86 head = head.link;
87 return true;
88 }
89 else
90 return false;
91 }

92 /**
93 Returns the number of nodes in the list.
94 */
95 public int size()
96 {
97 int count = 0;
98 Node position = head;
99 while (position != null)

100 {
101 count++;
102 position = position.link;
103 }
104 return count;
105 }

106 public boolean contains(Object target)
107 {
108 return (find(target) != null);
109 }

110 /**
111 Finds the first node containing the target item, and returns a
112 reference to that node. If target is not in the list, null is returned.
113 */
114 private Node find(Object target)
115 {
116 Node position = head;
117 Object dataAtPosition;

5640_ch14.fm Page 696 Wednesday, February 11, 2004 2:44 PM

Java Linked Lists 697

Display 14.8 A Generic Linked List Class (Part 4 of 5)

118 while (position != null)
119 {
120 dataAtPosition = position.data;
121 if (target.equals(dataAtPosition))
122 return position;
123 position = position.link;
124 }
125 return null; //target was not found
126 }

127 public boolean isEmpty()
128 {
129 return (head == null);
130 }

131 public void clear()
132 {
133 head = null;
134 }

135 public boolean equals(Object otherList)
136 {
137 if (otherList == null)
138 return false;
139 else if (getClass() != otherList.getClass())
140 return false;
141 else if (size() != ((GenericLinkedList)otherList).size())
142 return false;
143 else
144 return compareLists((GenericLinkedList)otherList);
145 }

146 //Precondition: size() == otherList.size().
147 //Returns true if node by node, objects are equal.
148 private boolean compareLists(GenericLinkedList otherList)
149 {
150 boolean match = true;//so far
151 Node position = head;
152 Node otherPosition = otherList.head;

target's equals method is used
to test if the data in a node “is the
same as” target.

5640_ch14.fm Page 697 Wednesday, February 11, 2004 2:44 PM

698 Chapter 14 Linked Data Structures

do this would be to simply return the argument. This would, however, simply produce another
name for the argument list. We do not want another name; we want another list. So, the method
goes down the argument list one node at a time (with position) and makes a copy of each
node. The linked list of the calling object is built up node by node by adding these new nodes to
its linked list. However, there is a complication. We cannot simply add the new nodes at the head
(start) end of the list being built. If we did, then the nodes would end up in the reverse of the
desired order. So, the new nodes are added to the end of the linked list being built. The variable
end of type Node is kept positioned at the last node so that it is possible to add nodes at the end
of the linked list being built. In this a copy of the list in the calling object is created.

The copy constructor and the clone method are defined by using the private helping method
copyOf to create a copy of the list of nodes. Other details of the copy constructor and the clone
method are done in the standard way.

Although the copy constructor and clone method each produce a new linked list with all new
nodes, the new lists are not truly independent because the data object is not cloned. See the next
Pitfall section for a discussion of this point.

Display 14.8 A Generic Linked List Class (Part 5 of 5)

153 while (match && position != null)
154 {
155 if (!position.equals(otherPosition))
156 match = false;
157 position = position.link;
158 otherPosition = otherPosition.link;
159 }
160 return match;
161 }
162

163 public void outputList()
164 {
165 Node position = head;
166 while (position != null)
167 {
168 System.out.println(position.data);
169 position = position.link;
170 }
171 }

172 }

Objects in the linked list use
their own equals method to
test if they equal an object in
otherList.

5640_ch14.fm Page 698 Wednesday, February 11, 2004 2:44 PM

Java Linked Lists 699

Pitfall

THE clone METHOD IS PROTECTED IN Object

When defining the copy constructor and so the clone method for our generic linked list (Display
14.8), we would have liked to have cloned the data in the list being copied. We would have liked
to change the code in the helping method copyOf by adding invocations of the clone method
as follows:

newHead = new Node((position.data).clone(), null);
end = newHead;
position = position.link;

while (position != null)
{//copy node at position to end of new list.
 end.link =
 new Node((position.data).clone(), null);
 end = end.link;
 position = position.link;
}

This code is identical to code in copyOf except for the addition of the invocations of clone,
shown in red.

If this modified code (with the clone method) would compile, it would produce a truly indepen-
dent linked list with no references in common with the list being copied. Unfortunately, this code
will not compile.

If you try to compile this code, you will get an error message saying that the method clone is pro-
tected in the class Object. Since the designers of the Object class chose to make the method
clone protected, you simply cannot use the clone method in the GenericLinkedList class.
So, we simply did the best we could with the copy constructor and clone method of the class
GenericLinkedList. We have no way to make a completely independent copy in this situation.

Why was the clone method labeled protected in Object? Apparently for security reasons. If a
class could inherit the clone method unchanged from Object, then that would open the possi-
bility of copying sections of memory unchanged and unchecked and so might give unauthorized
memory access. The problem is made more serious by the fact that Java is used to run programs
on other machines across the Internet.

You might object that, since GenericLinkedList has no base class, it has an implicit base class
of Object and so it should inherit a protected method such as clone. That’s a good point. The
explanation is a bit subtle. Let’s explore it a bit more.

The following is a useless method, except that it does show that the method clone, which was
inherited from Object, is in some sense available in GenericLinkedList. The following
method will compile with no problems if added to GenericLinkedList:

public void justATest()
{

5640_ch14.fm Page 699 Wednesday, February 11, 2004 2:44 PM

700 Chapter 14 Linked Data Structures

 GenericLinkedList toy = new GenericLinkedList();
 GenericLinkedList toy2 =
 (GenericLinkedList)(toy.clone());
}

Now let’s return to our discussion of the method copyOf in which we could not use the inherited
method clone. If the inherited method clone could be invoked in justATest, why can’t it be
invoked in the method copyOf, as follows?

head = new Node((position.data).clone(), null);

The problem is that position.data is of type Object, not of type GenericLinkedList. In
our example of the method justATest, which did work, toy.clone() was okay because toy
was of type GenericLinkedList and this was taking place inside the definition of Generic-
LinkedList. The inherited method clone is only available to the class GenericLinkedList.
For an object of type Object, the protected method clone acts the same as if it were private in
Object. This general point is discussed in the Pitfall section of Chapter 7 entitled “A Restriction
on Protected Access.” It may help to review that Pitfall section.

One solution to this problem is to not use the class Object as the type for the data object, but to
instead use a more specialized class. For example, you can use the class Employee from Display
7.2, with the usual equals (Display 7.8) and clone (Self-Test Exercise 17 of Chapter 13) methods
added, and then you can have a linked list of objects from any descendent classes such as the
classes HourlyEmployee (Display 7.3 with the usual equals and clone methods added) and
SalariedEmployee (Display 7.5 with the usual equals and clone methods added). Moreover,
since the clone method is redefined to be public in the class Employee, we could use the clone
method to clone the data object in a node. This means the linked list can create truly independent
copies of a linked list. A class called LinkedListOfEmployees could be defined just like the
class GenericLinkedList except for the following three changes:

1. The name GenericLinkedList is replaced by LinkedListOfEmployees wherever it occurs.

2. The name Object is replaced by Employee every place except that the return type for clone
is left as Object and the type for the parameter to equals is left as Object.

3. The definition of the method copyOf has invocations of clone added as shown in Display 14.9.

The resulting class is described in Display 14.9. The version of LinkedListOfEmployees given
on the accompanying CD is complete and includes all the parts omitted from Display 14.9. (The CD
also includes the definitions of the classes Date, Employee, HourlyEmployee, and Sala-
riedEmployee updated to include the usual equals and clone methods.)

Note that, unlike the class GenericLinkedList, the class LinkedListOfEmployees has a
clone method that produces a truly independent copy of the calling object; that is, a copy with
no references in common with the linked list of the calling object.

Note that there are two places in LinkedListOfEmployees where we did not replace Object
with Employee: The return type for the method clone is left as Object and the type for the
parameter to equals is left as Object. We did this so that the clone and equals methods
would be overrides of the inherited clone and equals methods.

extra code on CD

5640_ch14.fm Page 700 Wednesday, February 11, 2004 2:44 PM

Java Linked Lists 701

Display 14.9 A Linked List with a True clone Method (Part 1 of 2)

1 public class LinkedListOfEmployees implements Cloneable
2 {
3 private class Node
4 {
5 private Employee data;
6 private Node link;

7 public Node()
8 {
9 data = null;

10 link = null;
11 }

12 public Node(Employee newData, Node linkValue)
13 {
14 data = newData;
15 link = linkValue;
16 }
17 }//End of Node inner class

18 private Node head;

19 /**
20 Throws a NullPointerException if other is null. Produces a completely
21 independent copy with no references in common with otherList.
22 */
23 public LinkedListOfEmployees(LinkedListOfEmployees otherList)
24 {
25 if (otherList == null)
26 throw new NullPointerException();
27 if (otherList.head == null)
28 head = null;
29 else
30 head = copyOf(otherList.head);
31 }

32 //Precondition: otherHead != null
33 //Returns a reference to the head of a copy of the
34 //list headed by otherHead. Does a deep copy.
35 private Node copyOf(Node otherHead)
36 {
37 Node position = otherHead;//moves down other's list.
38 Node newHead; //will point to head of the copy list.
39 Node end = null; //positioned at end of new growing list.

Copy constructor produces a
completely independent copy (a deep
copy) of its argument.

5640_ch14.fm Page 701 Wednesday, February 11, 2004 2:44 PM

codes701.html

702 Chapter 14 Linked Data Structures

Display 14.9 A LinkedList with a True clone Method (Part 2 of 2)

40 //Create first node:
41 newHead =
42 new Node((Employee)((position.data).clone()), null);
43 end = newHead;
44 position = position.link;
45 while (position != null)
46 {//copy node at position to end of new list.
47 end.link =
48 new Node((Employee)((position.data).clone()), null);
49 end = end.link;
50 position = position.link;
51 }

52 return newHead;
53 }

54 public Object clone()
55 {
56 try
57 {
58 LinkedListOfEmployees copy =
59 (LinkedListOfEmployees)super.clone();
60 copy.head = copyOf(this.head);
61 return copy;
62 }
63 catch(CloneNotSupportedException e)
64 {//This should not happen.
65 return null; //To keep the compiler happy.
66 }
67 }
68 public boolean equals(Object otherList)
69 {
70 if (otherList == null)
71 return false;
72 else if (getClass() != otherList.getClass())
73 return false;
74 else if (size() != ((LinkedListOfEmployees)otherList).size())
75 return false;
76 else
77 return compareLists((LinkedListOfEmployees)otherList);
78 }

 <All the other methods and constructors are the same as in GenericLinkedList
 in Display 14.8, except that GenericLinkedList is replaced with
 LinkedListOfEmployees and Object is replaced with Employee, throughout.>

79 }

This is a true clone method that returns a
completely independent copy (a deep copy)
of the calling object.

You need these type casts because clone
returns a value of type Object.

5640_ch14.fm Page 702 Wednesday, February 11, 2004 2:44 PM

Java Linked Lists 703

Tip

DEEP COPY VERSUS SHALLOW COPY

Contrast the copy constructors in the linked lists GenericLinkedList in Display 14.8 and
LinkedListOfEmployees in Display 14.9. The difference is in the methods normalCopy which
are used in the copy constructors of the two classes.

In the method copyOf for the class LinkedListOfEmployees, each new node is given a clone
of the data in the old node. That way, the old list and the new copy have no references in com-
mon, so any change to the new list will not have any effect on the old list (and vice versa). This
kind of copy is called a deep copy. A deep copy of an object (such as a linked list) is a copy that
has no references in common with the original. So, the deep copy and the original are completely
independent copies, and changes to the copy will have no effect on the original.

Making a deep copy usually involves using the clone method on items inside the thing being
copied. This requires that the clone methods used in making a deep copy do themselves make
deep copies.

Any copy that is not a deep copy is called a shallow copy. For example, the copy constructor in
the linked list GenericLinkedList in Display 14.8 makes a shallow copy. The reason that it is a
shallow copy is that, in the method normalCopy for the class GenericLinkedList, each new
node is given only a reference to the data in the old node, rather than a clone of the data. So,
changes to the new list can have an effect on the old list.

There are degrees of shallowness. For example, if we redefine the copy constructor for the class
GenericLinkedList in Display 14.8 so that the copy constructor simply copies the reference in
the head instance variable to the head instance variable of the new copy, that would be an even
shallower copy. In this case the list and its copy would be the same and would have all references
in common. However, we are usually concerned with only whether or not a copy is a deep copy.
So, we lump all kinds of shallow copies together and use the single term shallow copy for all kinds
of shallow copies.

In the majority of situations a deep copy is preferable to a shallow copy. In particular, a copy con-
structor and a clone method should normally make a deep copy if that is possible. There are
cases, although not as common, where you might want a shallow copy.

■ EXCEPTIONS

A generic data structure, such as GenericLinkedList in Display 14.8 or even Linked-
ListOfEmployees in Display 14.9, is likely to have methods that throw exceptions. Situa-
tions such as a null argument to the copy constructor might be handled differently in
different situations, so it is best to throw a NullPointerException if this happens and let
the programmer who is using the linked list handle the exception. This is what we did
with the copy constructors in GenericLinkedList in Display 14.8 and LinkedListOfEm-
ployees in Display 14.9. A NullPointerException is the kind of exception that need not
be caught or declared in a throws clause. When thrown by a method of a linked list class,
it can be treated as simply a run-time error message or the exception can instead be
caught in a catch block if there is some suitable action that can be taken.

5640_ch14.fm Page 703 Wednesday, February 11, 2004 2:44 PM

704 Chapter 14 Linked Data Structures

Self-Test Exercises

8. Would it be legal to change the parameter type of equals in the class LinkedListOfEm-
ployees (Display 14.9) from Object to LinkedListOfEmployees? You should not do
this, but the question is not whether you should do this, but whether it is legal.

9. Would it be legal to change the return type of clone in the class LinkedListOfEmploy-
ees (Display 14.9) from Object to LinkedListOfEmployees? You should not do this,
but the question is not whether you should do this, but whether it is legal.

■ ITERATORS

When you have a collection of objects, such as the nodes of a linked list, you often
need to step through all the objects in the collection and perform some action on each
object, such as writing it out to the screen or in some way editing the data in each
object. An iterator is any object that allows you to step through the list in this way.

In Display 14.10 we have rewritten the class LinkedListOfEmployees from Display
14.9 so that it has an inner class for iterators and a method iterator() that returns an
iterator for its calling object. We have made the inner class EmployeeIterator public so
that we can have variables of type EmployeeIterator outside the class LinkedListOf-
Employees, but we do not otherwise plan to use the inner class EmployeeIterator out-
side of the outer class LinkedListOfEmployees.

Use of iterators for the class LinkedListOfEmployees is illustrated by the program in
Display 14.11. Note that, given a link list named list, an iterator for list is produced
by the method iterator as follows:

LinkedListOfEmployees.EmployeeIterator i =
 list.iterator();

The iterator i produced in this way can only be used with the linked list named list.
Be sure to notice that outside of the class, the type name for the inner class iterator
must include the name of the outer class as well as the inner iterator class. The class
name for one of these iterators is

LinkedListOfEmployees.EmployeeIterator

ITERATORS

Suppose you have a collection of data items, such as a linked list. Any object that allows you to
step through the collection one item at a time so that each item is visited exactly once in one full
cycle of iterations is called an iterator.

iterator

5640_ch14.fm Page 704 Wednesday, February 11, 2004 2:44 PM

Java Linked Lists 705

Display 14.10 A Linked List with an Iterator (Part 1 of 2)

1 import java.util.NoSuchElementException;

2 public class LinkedListOfEmployees
3 {
4 private class Node
5 {
6 private Employee data;
7 private Node link;

 <The full definition of the Node inner class is given in Display 14.9.>
 }//End of Node inner class

8 /**
9 If the list is altered any iterators should invoke restart or

10 the iterator's behavior may not be as desired.
11 */
12 public class EmployeeIterator
13 {
14 private Node position;
15 private Node previous;//previous value of position

16 public EmployeeIterator()
17 {
18 position = head; //Instance variable head of outer class.
19 previous = null;
20 }

21 public void restart()
22 {
23 position = head; //Instance variable head of outer class.
24 previous = null;
25 }

26 public Employee next()
27 {
28 if (!hasNext())
29 throw new NoSuchElementException();

30 Employee toReturn = position.data;
31 previous = position;
32 position = position.link;
33 return toReturn;
34 }

An inner class for iterators for
LinkedListOfEmployees.

This is the same as the class in Display 14.9 except that
the EmployeeIterator inner class and the
iterator() method have been added.

5640_ch14.fm Page 705 Wednesday, February 11, 2004 2:44 PM

codes705.html

706 Chapter 14 Linked Data Structures

Display 14.10 A Linked List with an Iterator (Part 2 of 2)

35 public boolean hasNext()
36 {
37 return (position != null);
38 }

39 /**
40 Returns the next value to be returned by next().
41 Throws an IllegalStateExpression if hasNext() is false.
42 */
43 public Employee peek()
44 {
45 if (!hasNext())
46 throw new IllegalStateException();
47 return position.data;
48 }

49 /**
50 Adds a node before the node at location position.
51 previous is placed at the new node. If hasNext() is
52 false, then the node is added to the end of the list.
53 If the list is empty, inserts node as the only node.
54 */
55 public void add(Employee newData)
 <The rest of the method add is Self-Test Exercise 10.>

56 /**
57 Deletes the node at location position and
58 moves position to the "next" node.
59 Throws an IllegalStateException if the list is empty.
60 */
61 public void delete()
 <The rest of the method delete is Self-Test Exercise 11.>
62 }//End of EmployeeIterator inner class

63 private Node head;

64 public EmployeeIterator iterator()
65 {
66 return new EmployeeIterator();
67 }
 <The other methods and constructors are identical to those in Display 14.9.>
68 }

If list is an object of the class
LinkedListOfEmployees, then
list.iterator() returns an
iterator for list.

5640_ch14.fm Page 706 Wednesday, February 11, 2004 2:44 PM

Java Linked Lists 707

Display 14.11 Using an Iterator (Part 1 of 2)

1 public class IteratorDemo
2 {
3 public static void main(String[] args)
4 {
5 LinkedListOfEmployees list = new LinkedListOfEmployees();
6 list.add(new Employee("Sandy Hair", new Date(1, 1, 2000)));
7 list.add(new HourlyEmployee(
8 "Dusty Rhodes", new Date(2, 2, 2001), 25.00, 40.0));
9 list.add(new SalariedEmployee(

10 "Chuck Steak", new Date(3, 3, 2002), 80000));

11 LinkedListOfEmployees.EmployeeIterator i = list.iterator();

12 System.out.println("List contains:");
13 while(i.hasNext())
14 System.out.println(i.next());
15 System.out.println();

16 i.restart();
17 i.next();
18 System.out.println("Will delete node for "
19 + (i.peek()).getName());
20 i.delete();

21 System.out.println("List now contains:");
22 i.restart();
23 while(i.hasNext())
24 System.out.println(i.next());
25 System.out.println();

26 i.restart();
27 i.next();
28 System.out.println("Will add one node before "
29 + (i.peek()).getName());
30 i.add(new Employee(
31 "Natalie Dressed", new Date(4, 4, 2003)));
32 System.out.println("List now contains:");
33 i.restart();
34 while(i.hasNext())
35 System.out.println(i.next());

You can add any kind of
Employee to the linked list.

5640_ch14.fm Page 707 Wednesday, February 11, 2004 2:44 PM

codes707.html

708 Chapter 14 Linked Data Structures

Display 14.11 Using an Iterator (Part 2 of 2)

36 System.out.println();
37 System.out.println("Changing all names to Kilroy.");
38 i.restart();
39 while(i.hasNext())
40 (i.next()).setName("Kilroy");
41 System.out.println();

42 System.out.println("List now contains:");
43 i.restart();
44 while(i.hasNext())
45 System.out.println(i.next());
46 System.out.println();
47 }
48 }

SAMPLE DIALOGUE

List contains:
Chuck Steak Mar 3, 2002
$80000.0 per year
Dusty Rhodes Feb 2, 2001
$25.0 per hour for 40.0 hours
Sandy Hair Jan 1, 2000

Will delete node for Dusty Rhodes
List now contains:
Chuck Steak Mar 3, 2002
$80000.0 per year
Sandy Hair Jan 1, 2000

Will add one node before Sandy Hair
List now contains:
Chuck Steak Mar 3, 2002
$80000.0 per year
Natalie Dressed Apr 4, 2003
Sandy Hair Jan 1, 2000

Changing all names to Kilroy.

List now contains:
Kilroy Mar 3, 2002
$80000.0 per year
Kilroy Apr 4, 2003
Kilroy Jan 1, 2000

next() returns a reference, so you
can modify the data in a node.

5640_ch14.fm Page 708 Wednesday, February 11, 2004 2:44 PM

Java Linked Lists 709

The basic method for cycling through the elements in the linked list using an itera-
tor is illustrated by the following code from the demonstration program:

System.out.println("List now contains:");
i.restart();
while(i.hasNext())
 System.out.println(i.next());

The iterator is named i in this code. The iterator i is reset to the beginning of the list with
the method invocation i.restart(); and each execution of i.next() produces the next
data item in the linked list. After all the data items in all the nodes have been returned by
i.next(), the Boolean i.hasNext() becomes false and the while loop ends.

As we have defined the iterator inner class EmployeeIterator, the method next
returns a reference to the data item in a node. This allows you to modify the data in the
nodes as the iterator cycles through all the nodes in the collection, This is illustrated by
the following code from that program in Display 14.11:

System.out.println("Changing all names to Kilroy.");
i.restart();
while(i.hasNext())
 (i.next()).setName("Kilroy");

You can also define iterators that do not allow the programmer to change the linked
list, as explained in the upcoming subsection entitled “Immutable Iterators.”

The definitions of the methods add and delete are left as Self-Test Exercises. How-
ever, we will give the basic technique for adding and deleting nodes in the middle of a
linked list. (And if you cannot get the definitions after that, you can look up the defini-
tion in the answers to the Self-Test Exercises.) The techniques for adding and deleting
nodes are in the next subsection.

■ ADDING AND DELETING NODES

To add or delete a node in a linked list, you normally use an iterator and add or delete
a node at the (approximate) location of the iterator. Since deleting is a little easier than
adding a node, we will discuss deleting first.

Display 14.12 shows the technique for deleting a node. The linked list is an object
of the class LinkedListOfEmployees. The variables position and previous are the
instance variables of an iterator for the linked list object. The variables position and
previous each hold a reference to a node, indicated with an arrow. Much of the data in
the data object of a node is not shown; only the employee’s name is shown. As indi-
cated in Display 14.12, the node at location position is deleted by the following two
lines of code:

previous.link = position.link;
position = position.link;

5640_ch14.fm Page 709 Wednesday, February 11, 2004 2:44 PM

710 Chapter 14 Linked Data Structures

Display 14.12 Deleting a Node

previous
"Chuck Steak"

position
"Dusty Rhodes"

"Sandy Hair"

"Natalie Dressed"

null

"Chuck Steak"

"Dusty Rhodes"

"Sandy Hair"

"Natalie Dressed"

null

previous

position

previous
"Chuck Steak"

position
"Dusty Rhodes"

"Sandy Hair"

"Natalie Dressed"

null

"Chuck Steak"

"Natalie Dressed"

null

previous

position
"Sandy Hair"

po
si
ti
on
 =
 p
os
it
io
n.
li
nk
;

Same picture with deleted

node not shown.

previous.link = position.link;

5640_ch14.fm Page 710 Tuesday, February 17, 2004 5:38 PM

Java Linked Lists 711

When your code deletes a node from a linked list (as in Display 14.12), it removes
the linked list’s reference to that node. So, as far as the linked list is concerned, the node
is no longer on the linked list. But, the node is still in the computer’s memory. If there
are no longer any references to the deleted node, then the storage that it occupies
should be made available for other uses. In many programming languages, you, the
programmer, must keep track of items such as deleted nodes and must give explicit
commands to return their memory for recycling. This is called garbage collecting or
explicit memory management. In Java, this is done for you automatically—or, as it is
ordinarily phrased, Java has automatic garbage collection.

Display 14.13 shows the technique for adding a node. We want to add a new node
between the nodes named by previous and position. In Display 14.13, previous and
position are variables of type Node and each contains a reference to a node indicated
with an arrow. So, the new node goes between the two nodes circled in the first picture.

A constructor for the class Node does a lot of the work for us: It creates the new
node; it adds the data; and it sets the link field of the new node to a reference to the
node named by position. All this is done with the following:

new Node(newData, position)

So we can recognize the node with newData in it, let’s assume the name part of the data
in newData is "Sandy Hair". The following gets us from the first to the second picture:

temp = new Node(newData, position);

To finish the job, all we need to do is move the circled arrow in the second picture. We
want to move the arrow to the node named by temp. The following finishes our job:

previous.link = temp;

The new node is inserted in the desired place, but the picture is not too clear. The
fourth picture is the same as the third one; we have simply redrawn it to make it neater.

To summarize, the following two lines insert a new node with newData as its data.
The new node is inserted between the nodes named by previous and position.

temp = new Node(newData, position);
previous.link = temp;

previous, position, and temp are all variables of type Node. (When we use this code, previ-
ous and position will be instance variables of an iterator and temp will be a local variable.)

■ IMMUTABLE ITERATORS

An immutable iterator is one that cannot use the mutator methods of the data object to
change a data object in the linked list. If you do not want to use an iterator to modify the
elements in a linked list, you can make it an immutable iterator by having the next
method return a clone of the data rather than a reference to the data. This will reduce the

5640_ch14.fm Page 711 Wednesday, February 11, 2004 2:44 PM

712 Chapter 14 Linked Data Structures

"Sandy Hair"

head
"Chuck Steak"

"Dusty Rhodes"

"Natalie Dressed"

null

temp

?

head
"Chuck Steak"

"Dusty Rhodes"

temp

"Natalie Dressed"

null

previous previous

positionposition

head
"Chuck Steak"

"Dusty Rhodes"

temp

"Natalie Dressed"

null

previous

position

previous
"Dusty Rhodes"

head
"Chuck Steak"

temp
"Sandy Hair"

position
"Natalie Dressed"

null

temp = new Node(newData, position);//newData has name "Sandy Hair"

Redraw picture.

pr
ev
io
us
.l
in
k
=
te
mp
;

Inserting between
these two nodes.

This is previous.link.
Next step moves this arrow.

Local variable of type Node.

Display 14.13 Adding a Node between Two Nodes

"Sandy Hair"

5640_ch14.fm Page 712 Wednesday, February 11, 2004 2:44 PM

Java Linked Lists 713

risk of privacy leaks. To obtain an immutable iterator for the class LinkedListOfEmploy-
ees, redefine the next method in Display 14.10 to the one shown in Display 14.14.

Note that an immutable iterator can modify a linked list by using the methods add
and remove. However, it does not allow somebody to receive a reference to a data object
and later change it unexpectedly.

If you change the definition of next in LinkedListOfEmployees to the one in Dis-
play 14.14, then when you run the program in Display 14.11, the output would
change to the following:

List contains:
Chuck Steak Mar 3, 2002
$80000.0 per year
Dusty Rhodes Feb 2, 2001
$25.0 per hour for 40.0 hours
Sandy Hair Jan 1, 2000

Will delete node for Dusty Rhodes
List now contains:
Chuck Steak Mar 3, 2002
$80000.0 per year
Sandy Hair Jan 1, 2000

Will add one node before Sandy Hair
List now contains:
Chuck Steak Mar 3, 2002
$80000.0 per year
Natalie Dressed Apr 4, 2003
Sandy Hair Jan 1, 2000

Changing all names to Kilroy:

List now contains:
Chuck Steak Mar 3, 2002
$80000.0 per year
Natalie Dressed Apr 4, 2003
Sandy Hair Jan 1, 2000

THE JAVA Iterator INTERFACE

Java has an interface named Iterator that specifies how Java would like an iterator to behave. It
is in the package java.util (and so requires that you import this package). Our iterators do not
quite satisfy this interface, but they are in the same general spirit as that interface and could be
easily redefined to satisfy the Iterator interface.

The Iterator interface is discussed in Chapter 15.

5640_ch14.fm Page 713 Wednesday, February 11, 2004 2:44 PM

714 Chapter 14 Linked Data Structures

Display 14.14 A next Method for an Immutable Iterator

1 import java.util.NoSuchElementException;

2 public class LinkedListOfEmployees
3 {
4 private class Node
5 {
6 private Employee data;
7 private Node link;

 <The full definition of the Node inner class is given in Display 14.9.>

8 }//End of Node inner class

9 public class EmployeeIterator
10 {
11 private Node position;
12 private Node previous;//previous value of position

13 public Employee next()
14 {
15 if (!hasNext())
16 throw new NoSuchElementException();

17 Employee toReturn = (Employee)((position.data).clone());
18 previous = position;
19 position = position.link;
20 return toReturn;
21 }

 <The rest of the definition of the EmployeeIterator is given in Display 14.9.>

22 }//End of Iterator inner class

23 private Node head;

24 public EmployeeIterator iterator()
25 {
26 return new EmployeeIterator();
27 }

 <The other methods and constructors for LinkedListOfEmployees
 are identical to those in Display 14.9.>
28 }

Except for the definition of the method next, this
definition of LinkedListOfEmployees is
identical to the one given in Display 14.10.

5640_ch14.fm Page 714 Wednesday, February 11, 2004 2:44 PM

codes714.html

Java Linked Lists 715

Self-Test Exercises

Note that the add and remove methods can still modify the linked list, but the muta-
tor methods, like setName, can no longer change the original data item because they
would be working on a clone of the data object contained in the list.

10. Complete the definition of the method add in the inner class EmployeeIterator in Dis-
play 14.10.

11. Complete the definition of the method delete in the inner class EmployeeIterator in
Display 14.10.

■ VARIATIONS ON A LINKED LIST

Sometimes it is handy to have a reference to the last node in a linked list. This last node
is often called the tail of the list, so the linked list definition might begin as follows:

public class LinkedListOfEmployees
{
 <Inner class definitions.>
 private Node head;
 private Node tail;

To fully carry out this addition to the class LinkedListOfEmployees in Display 14.9,
the constructors and methods must be modified to accommodate this new reference
tail, but the details of doing so are routine.

An ordinary linked list allows you to move down the list in only one direction (fol-
lowing the links). A doubly linked list has one link that has a reference to the next node
and one that has a reference to the previous node. Diagrammatically, a doubly linked
list looks like the sample list in Display 14.15.

The node class for a doubly linked list can begin as follows:

private class TwoWayNode
{
 private Object data;
 private TwoWayNode previous;
 private TwoWayNode next;

The constructors and some of the methods in the doubly linked list class will have
changes (from the singly linked case) in their definitions to accommodate the extra link.

■ THE STACK DATA STRUCTURE

A stack is not necessarily a linked data structure, but it can be implemented as a linked
list. A stack is a data structure that removes items in the reverse of the order in which
they were inserted. So if you insert "one", then "two", and then "three" into a stack

tail

doubly linked list

stack

5640_ch14.fm Page 715 Wednesday, February 11, 2004 2:44 PM

716 Chapter 14 Linked Data Structures

and then remove them, they will come out in the order "three", then "two", and finally
"one". Stacks are discussed in more detail in Chapter 11. A linked list that inserts and
deletes only at the head of the list (such as the one in Display 14.3) is in fact a stack.

Trees
I think that I shall never see a data structure as useful as a tree.

Anonymous

A detailed treatment of trees is beyond the scope of this chapter. The goal of this chap-
ter is to teach you the basic techniques for constructing and manipulating data struc-

"rolls"

10

null

Display 14.15 A Doubly Linked List

"jam"

3

"milk"

1

"tea"

2

null

14.2

5640_ch14.fm Page 716 Wednesday, February 11, 2004 2:44 PM

Trees 717

tures based on nodes and links (that is, nodes and references). The linked lists served as
good examples for our discussion. However, the tree data structure will be an example
of a more complicated data structure made with links. Moreover, trees are a very
important and widely used data structure. So, we will briefly outline the general tech-
niques used to construct and manipulate trees. This section is only a very brief intro-
duction to trees to give you the flavor of the subject.

This section uses recursion, which is covered in Chapter 11.

■ TREE PROPERTIES

A tree is a data structure that is structured as shown in Display 14.16. In particular, in
a tree you can reach any node from the top (root) node by some path that follows the
links. Note that there are no cycles in a tree. If you follow the links, you eventually get
to an “end.” A definition for a tree class for this sort of tree of ints is outlined in Dis-
play 14.16. Note that each node has two references to other nodes (two links) coming
from it. This sort of tree is called a binary tree, because each node has exactly two link
instance variables. There are other kinds of trees with different numbers of link
instance variables, but the binary tree is the most common case.

The instance variable named root serves a purpose similar to that of the instance
variable head in a linked list (Display 14.3). The node whose reference is in the root
instance variable is called the root node. Any node in the tree can be reached from the
root node by following the links.

The term tree may seem like a misnomer. The root is at the top of the tree and the
branching structure looks more like a root branching structure than a tree branching
structure. The secret to the terminology is to turn the picture (Display 14.16) upside-
down. The picture then does resemble the branching structure of a tree and the root
node is where the tree’s root would begin. The nodes at the ends of the branches with
both link instance variables set to null are known as leaf nodes, a terminology that
may now make some sense.

By analogy to an empty linked list, an empty tree is denoted by setting the link vari-
able root equal to null.

Note that a tree has a recursive structure. Each tree has, in effect, two subtrees whose
root nodes are the nodes pointed to by the leftLink and rightLink of the root node.
These two subtrees are circled in color in Display 14.16. This natural recursive struc-
ture makes trees particularly amenable to recursive algorithms. For example, consider
the task of searching the tree in such a way that you visit each node and do something
with the data in the node (such as writing it out to the screen). There is a general plan
of attack that goes as follows:

Preorder Processing

1. Process the data in the root node.

2. Process the left subtree.

3. Process the right subtree.

binary tree

root node

leaf node

empty tree

preorder

5640_ch14.fm Page 717 Wednesday, February 11, 2004 2:44 PM

718 Chapter 14 Linked Data Structures

Display 14.16 A Binary Tree

1 public class IntTree
2 {
3 public class IntTreeNode
4 {
5 private int data;
6 private IntTreeNode leftLink;
7 private IntTreeNode rightLink;
8 } //End of IntTreeNode inner class

9 private IntTreeNode root;
 <The methods and other inner classes are not shown.>

10 }

20

10

null

null

30

null

null

50

null

60

null

null

40

left subtree right subtree

root

5640_ch14.fm Page 718 Wednesday, February 11, 2004 2:44 PM

Trees 719

You obtain a number of variants on this search process by varying the order of these
three steps. Two more versions follow:

Inorder Processing

1. Process the left subtree.

2. Process the data in the root node.

3. Process the right subtree.

Postorder Processing

1. Process the left subtree.

2. Process the right subtree.

3. Process the data in the root node.

The tree in Display 14.16 has numbers that were stored in the tree in a special way
known as the Binary Search Tree Storage Rule. The rule is as follows:

A tree that satisfies the Binary Search Tree Storage Rule is referred to as a binary
search tree.

Note that if a tree satisfies the Binary Search Tree Storage Rule and you output the
values using the Inorder Processing method, then the numbers will be output in order
from smallest to largest.

For trees that follow the Binary Search Tree Storage Rule and that are short and
fat rather than tall and thin, values can be very quickly retrieved from the tree using
a binary search algorithm that is similar in spirit to the binary search algorithm we
presented in Display 11.8. The topic of searching and maintaining a binary storage
tree to realize this efficiency is a large topic that goes beyond what we have room for
here. However, we give one example of a tree that satisfies the Binary Search Tree
Storage Rule.

BINARY SEARCH TREE STORAGE RULE

1. All the values in the left subtree are less than the value in the root node.

2. All the values in the right subtree are greater than or equal to the value in the root node.

3. This rule applies recursively to each of the two subtrees.

(The base case for the recursion is an empty tree, which is always considered to satisfy the rule.)

inorder

postorder

Binary Search
Tree Storage Rule

binary search tree

5640_ch14.fm Page 719 Wednesday, February 11, 2004 2:44 PM

720 Chapter 14 Linked Data Structures

Example

A BINARY SEARCH TREE CLASS ✜

Display 14.17 contains the definition of a class for a binary search tree that satisfies the Binary
Search Tree Storage Rule. For simplicity, this tree stores integers, but a routine modification can
produce a similar tree class that stores objects of any class that implements the Comparable
interface. Display 14.18 demonstrates the use of this tree class. Note that no matter in which order
the integers are inserted into the tree, the output, which uses inorder traversal, outputs the inte-
gers in sorted order.

The methods in this class make extensive use of the recursive nature of binary trees. If aNode is a
reference to any node in the tree (including possibly the root node), then the entire tree with root
aNode can be decomposed into three parts:

The node aNode.

The left subtree with root node aNode.leftLink.

The right subtree with root node aNode.rightLink.

The left and right subtrees do themselves satisfy the Binary Search Tree Storage Rule and so it is
natural to use recursion that processes the entire tree by:

Processing the left subtree with root node aNode.leftLink.

Processing the node aNode.

Processing the right subtree with root node aNode.rightLink.

Note that we processed the root node after the left subtree (inorder traversal). This guarantees
that the numbers in the tree are output in the order smallest to largest. The method showEle-
mentsInSubtree uses a very straightforward implementation of this technique.

Other methods are a bit more subtle in that only one of the two subtrees needs to be processed.
For example, consider the method isInSubtree, which returns true or false depending on
whether or not the parameter item is in the tree with root node subTreeRoot. To see if the item
is anyplace in the tree, you set subTreeRoot equal to the root of the entire tree, as we did in the
method contains. However, to express our recursive algorithm for isInSubtree, we need to
allow the possibility of subtrees other than the entire tree.

The algorithm for isInSubtree expressed in pseudo code is

if (The root node subTreeRoot is empty.)
 return false;
else if (The node subTreeRoot contains item.)
 return true;
else if (item < subTreeRoot.data)
 return (The result of searching the tree with
 root node subTreeRoot.leftLink);
else //item > link.data
 return (The result of searching the tree with
 root node subTreeRoot.rightLink);

5640_ch14.fm Page 720 Wednesday, February 11, 2004 2:44 PM

Trees 721

Display 14.17 A Binary Search Tree for Integers (Part 1 of 2)

1 /**
2 Class invariant: The tree satisfies the binary search tree storage rule.
3 */
4 public class IntTree
5 {
6 private static class IntTreeNode
7 {
8 private int data;
9 private IntTreeNode leftLink;

10 private IntTreeNode rightLink;
11
12 public IntTreeNode(int newData, IntTreeNode newLeftLink,
13 IntTreeNode newRightLink)
14 {
15 data = newData;
16 leftLink = newLeftLink;
17 rightLink = newRightLink;
18 }
19 } //End of IntTreeNode inner class

20 private IntTreeNode root;

21 public IntTree()
22 {
23 root = null;
24 }

25 public void add(int item)
26 {
27 root = insertInSubtree(item, root);
28 }

29 public boolean contains(int item)
30 {
31 return isInSubtree(item, root);
32 }

33 public void showElements()
34 {
35 showElementsInSubtree(root);
36 }

This class should have more methods. This is just a
sample of possible methods.

The only reason this inner class is static
is that it is used in the static methods
insertInSubtree, isInSubtree,
and showElementsInSubtree.

5640_ch14.fm Page 721 Wednesday, February 11, 2004 2:44 PM

codes721.html

722 Chapter 14 Linked Data Structures

Display 14.17 A Binary Search Tree for Integers (Part 2 of 2)

37 /**
38 Returns the root node of a tree that is the tree with root node
39 subTreeRoot, but with a new node added that contains item.
40 */
41 private static IntTreeNode insertInSubtree(int item,
42 IntTreeNode subTreeRoot)
43 {
44 if (subTreeRoot == null)
45 return new IntTreeNode(item, null, null);
46 else if (item < subTreeRoot.data)
47 {
48 subTreeRoot.leftLink = insertInSubtree(item, subTreeRoot.leftLink);
49 return subTreeRoot;
50 }
51 else //item >= subTreeRoot.data
52 {
53 subTreeRoot.rightLink = insertInSubtree(item, subTreeRoot.rightLink);
54 return subTreeRoot;
55 }
56 }

57 private static boolean isInSubtree(int item, IntTreeNode subTreeRoot)
58 {
59 if (subTreeRoot == null)
60 return false;
61 else if (subTreeRoot.data == item)
62 return true;
63 else if (item < subTreeRoot.data)
64 return isInSubtree(item, subTreeRoot.leftLink);
65 else //item >= link.data
66 return isInSubtree(item, subTreeRoot.rightLink);
67 }

68 private static void showElementsInSubtree(IntTreeNode subTreeRoot)
69 {//Uses inorder traversal.
70 if (subTreeRoot != null)
71 {
72 showElementsInSubtree(subTreeRoot.leftLink);
73 System.out.print(subTreeRoot.data + " ");
74 showElementsInSubtree(subTreeRoot.rightLink);
75 }//else do nothing. Empty tree has nothing to display.
76 }
77 }

5640_ch14.fm Page 722 Wednesday, February 11, 2004 2:44 PM

Trees 723

Display 14.18 Demonstration Program for the Binary Search Tree

1 import java.io.BufferedReader;
2 import java.io.InputStreamReader;
3 import java.io.IOException;

4 public class BinarySearchTreeDemo
5 {
6 public static void main(String[] args) throws IOException
7 {
8 BufferedReader keyboard =
9 new BufferedReader(new InputStreamReader(System.in));

10 IntTree tree = new IntTree();

11 System.out.print("Enter a list of nonnegative integers,");
12 System.out.println(" one per line.");
13 System.out.println("Place a negative integer at the end.");
14 String nextNumberString = keyboard.readLine();
15 int next = Integer.parseInt(nextNumberString);
16 while (next >= 0)
17 {
18 tree.add(next);
19 nextNumberString = keyboard.readLine();
20 next = Integer.parseInt(nextNumberString);
21 }

22 System.out.println("In sorted order:");
23 tree.showElements();
24 }
25 }

SAMPLE DIALOGUE

Enter a list of nonnegative integers, one per line.
Place a negative integer at the end.
40
30
20
10
11
22
33
44
−1
In sorted order:
10 11 20 22 30 33 40 44

5640_ch14.fm Page 723 Wednesday, February 11, 2004 2:44 PM

codes723.html

724 Chapter 14 Linked Data Structures

The reason this algorithm gives the correct result is that the tree satisfies the Binary Search Tree
Storage Rule, so we know that if

item < subTreeRoot.data

then item is in the left subtree (if it is anywhere in the tree), and if

item > subTreeRoot.data

then item is in the right subtree (if it is anywhere in the tree).

The method with the following heading uses techniques very much like those used in isInSub-
tree:

private IntTreeNode insertInSubtree(
 int item, IntTreeNode subTreeRoot)

However, there is something new here. We want the method insertInSubtree to insert a new
node with the data item into the tree with root node subTreeRoot. But in this case we want to
deal with subTreeRoot as a variable and not use it only as the value of the variable subTree-
Root. For example, if subTreeRoot contains null, then we want to change the value of sub-
TreeRoot to a reference to a new node containing item. But, Java parameters cannot change
the value of a variable given as an argument. (Review the discussion of parameters in Chapter 5 if
this sounds unfamiliar.) So, we must do something a little different. To change the value of the
variable subTreeRoot, we return a reference to what we want the new value to be, and we
invoke the method subTreeRoot as follows:

subTreeRoot = insertInSubtree(item, subTreeRoot);

That explains why the method insertInSubtree returns a reference to a tree node, but we still
have to explain why we know it returns a reference to the desired (modified) subtree.

Note that the method insertInSubtree searches the tree just as the method isInSubtree
does, but it does not stop if it finds item; instead, it searches until it reaches a leaf node—that is,
a node containing null. This null is where the item belongs in the tree, so it replaces null with
a new subtree containing a single node that contains item. You may need to think about the
method insertInSubtree a bit to see that it works correctly; allow yourself some time to study
the method insertInSubtree and be sure you are convinced that after the addition, like so

subTreeRoot = insertInSubtree(item, subTreeRoot);

the tree with root node subTreeRoot still satisfies the Binary Search Tree Storage Rule.

The rest of the definition of the class IntTree is routine.

■ EFFICIENCY OF BINARY SEARCH TREES ✜

When searching a tree that is as short as possible (all paths from root to a leaf differ by
at most one node), the search method isInSubtree, and hence also the method con-
tains, is about as efficient as the binary search on a sorted array (Display 11.8). This

5640_ch14.fm Page 724 Wednesday, February 11, 2004 2:44 PM

Chapter Summary 725

Self-Test Exercises

should not be a surprise since the two algorithms are in fact very similar.1 That means
that searching a short fat binary tree is very efficient. To obtain this efficiency, the tree
does not need to be as short as possible so long as it comes close to being as short as
possible. As the tree becomes less short and fat and more tall and thin, the efficiency
falls off until, in the extreme case, the efficiency is the same as that of searching a linked
list with the same number of nodes.

Maintaining a tree so that it remains short and fat, as nodes are added, is a topic that
is beyond the scope of what we have room for in this book. (The technical term for
short and fat is balanced.) We will only note that if the numbers that are stored in the
tree arrive in random order, then with very high probability the tree will be short and
fat enough to realize the efficiency discussed in the previous paragraph.

12. Suppose that the code for the method showElementsInSubtree in Display 14.17 were
changed so that

showElementsInSubtree(subTreeRoot.leftLink);
System.out.print(subTreeRoot.data + " ");
showElementsInSubtree(subTreeRoot.rightLink);

were change to

System.out.print(subTreeRoot.data + " ");
showElementsInSubtree(subTreeRoot.leftLink);
showElementsInSubtree(subTreeRoot.rightLink);

Will the numbers still be output in ascending order?

13. How can you change the code for the method showElementsInSubtree in Display 14.17
so that the numbers are output from largest to smallest instead of from smallest to largest?

■ A linked list is a data structure consisting of objects known as nodes, such that each
node contains data and also a reference to one other node so that the nodes link
together to form a list.

■ Setting a link instance variable to null indicates the end of a linked list (or other
linked data structure). null is also used to indicate an empty linked list (or other
linked data structure).

1 For those who may be familiar with the notation, the worst-case running time is O(log n),
where n is the number of nodes in the tree.

Chapter Summary

balanced tree

5640_ch14.fm Page 725 Wednesday, February 11, 2004 2:44 PM

726 Chapter 14 Linked Data Structures

■ You can make a linked list (or other linked data structure) self-contained by making
the node class an inner class of the linked list class.

■ You can use an iterator to step through the elements of a collection, such as the ele-
ments in a linked list.

■ A binary tree is a branching linked data structure consisting of nodes that each have
two link instance variables. A tree has a special node called the root node. Every node
in the tree can be reached from the root node by following links.

■ If values are stored in a binary tree in such a way that the Binary Search Tree Storage
Rule is followed, then there are efficient algorithms for reaching values stored in the
tree.

ANSWERS TO SELF-TEST EXERCISES

1. mustard 1
hot dogs 12
apple pie 1

2. This method has been added to the class LinkedList1 on the accompanying CD.

public boolean isEmpty()
{
 return (head == null);
}

3. This method has been added to the class LinkedList1 on the accompanying CD.

public void clear()
{
 head = null;
}

If you defined your method to remove all nodes using the deleteHeadNode method, your
method is doing wasted work.

4. Yes. If we make the inner class Node1 a public inner class, it could be used outside the defi-
nition of LinkedList2, while leaving it as private means it cannot be used outside the def-
inition of LinkedList2.

5. It would make no difference. Within the definition of an outer class there is full access to
the members of an inner class whatever the inner class member’s access modifier is. To put
it another way, inside the private inner class Node1, the modifiers private and package
access are equivalent to public.

6. Since the outer class has direct access to the instance variables of the inner class Node2, no
access or mutator methods are needed for Node2.

extra code on CD

extra code on CD

5640_ch14.fm Page 726 Wednesday, February 11, 2004 2:44 PM

Answers to Self-Test Exercises 727

7. It would be legal, but it would be pretty much a useless method, since you cannot use the
type Node2 outside of the class LinkedList2. For example, outside of the class
LinkedList2 the following is illegal (listObject is of type LinkedList2):

Node2 v = listObject.startNode(); //Illegal

while the following would be legal outside of the class LinkedList2 (although it’s hard to
think of anyplace you might use it):

Object v = listObject.startNode();

8. It is legal, but will result in LinkedListOfEmployees having two equals methods: the
one inherited from the class Object that has a parameter of type Object, and the one with
the parameter of type LinkedListOfEmployees. This would be overloading the method
name equals, not overriding the method equals.

9. It is not legal since the class LinkedListOfEmployees inherits a method named clone()
and you cannot have two methods with the same name and parameter list but with differ-
ent returned types; or, to rephrase it, you cannot overload a method name based on the
type returned.

10. public void add(Employee newData)
{
 if (position == null && previous != null)
 //if at end of list
 previous.link =
 new Node(newData, null);
 else if (position == null || previous == null)
 //else if list is empty or position is at head node.
 LinkedListOfEmployees.this.add(newData);
 else//previous and position are located
 //at two consecutive nodes.
 {
 Node temp = new Node(newData, position);
 previous.link = temp;
 previous = temp;
 }
}

11. public void delete()
{
 if (position == null)
 throw new IllegalStateException();
 else if (previous == null)
 {//remove node at head
 head = head.link;
 position = head;
 }

5640_ch14.fm Page 727 Wednesday, February 11, 2004 2:44 PM

728 Chapter 14 Linked Data Structures

 else //previous and position are at two nodes.
 {
 previous.link = position.link;
 position = position.link;
 }
}

12. No.

13. Change

showElementsInSubtree(subTreeRoot.leftLink);
System.out.print(subTreeRoot.data + " ");
showElementsInSubtree(subTreeRoot.rightLink);

to

showElementsInSubtree(subTreeRoot.rightLink);
System.out.print(subTreeRoot.data + " ");
showElementsInSubtree(subTreeRoot.leftLink);

PROGRAMMING PROJECTS

1. Give the definition of a class for a doubly linked list of data items of type Object. Include
a copy constructor, an equals method, a clone method, a toString method, a method
to produce an iterator, and any other methods that would normally be expected. Write a
suitable test program.

2. Design and implement a class that is a class for polynomials. The polynomial

anx
n + an-1xn-1 +...+ a0

will be implemented as a linked list. Each node will contain an int value for the power of x
and an int value for the corresponding coefficient. The class operations should include
addition, subtraction, multiplication, and evaluation of a polynomial. Overload the opera-
tors +, −, and * for addition, subtraction, and multiplication. Evaluation of a polynomial is
implemented as a method named evaluation that has one argument of type int. The
evaluation method returns the value obtained by plugging in its argument for x and per-
forming the indicated operations. Include four constructors: a default constructor, a copy
constructor, a constructor with a single argument of type int that produces the polynomial
that has only one constant term that is equal to the constructor argument, and a construc-
tor with two arguments of type int that produces the one-term polynomial whose coeffi-
cient and exponent are given by the two arguments. (In the above notation the polynomial
produced by the one-argument constructor is of the simple form consisting of only a0. The
polynomial produced by the two-argument constructor is of the slightly more complicated

5640_ch14.fm Page 728 Wednesday, February 11, 2004 2:44 PM

project728a.html
project728b.html

Programming Projects 729

form anx
n.) Include a method to input a polynomial. When the user inputs a polynomial,

the user types in the following:

anx^n + an-1x^n−1 +...+ a0

However, if a coefficient ai is zero, the user may omit the term aix^ i. For example, the
polynomial

3x4 + 7x2 + 5

can be input as

3x^4 + 7x^2 + 5

It could also be input as

3x^4 + 0x^3 + 7x^2 + 0x^1 + 5

If a coefficient is negative, a minus sign is used in place of a plus sign, as in the following
examples:

3x^5 − 7x^3 + 2x^1 − 8
−7x^4 + 5x^2 + 9

A minus sign at the front of the polynomial, as in the second of the above two examples,
applies only to the first coefficient; it does not negate the entire polynomial. To simplify
input, you can assume that polynomials are always entered one per line and that there will
always be a constant term a0. If there is no constant term, the user enters zero for the con-
stant term, as in the following:

12x^8 + 3x^2 + 0

Polynomials are output in the same format. In the case of output, the terms with zero
coefficients are not output. Include a toString method and define it so that Sys-
tem.out.println will output polynomials in this format. Also be sure to include equals
and clone methods. Write a suitable test program.

3. Complete the definition of the binary search tree class IntTree in Display 14.17 by adding
the following: Make IntTree implement the Cloneable interface, including the defini-
tion of a clone method; add a copy constructor; add an equals method; add a method
named sameContents as described later in this project; add a toString method; and add
a method to produce an iterator. Define equals so that two trees are equal if (and only if)
the two trees have the exact same shape and have the same numbers in corresponding
nodes. The clone method and the copy constructor should each produce a deep copy that
is equal to the original list according to the equals method. The boolean valued method
sameContents has one parameter of type IntTree and returns true if the calling object
and the argument tree contain exactly the same numbers, and returns false otherwise.
Note that equals and sameContents are not the same. Also, write a suitable test program.

5640_ch14.fm Page 729 Wednesday, February 11, 2004 2:44 PM

project729b.html
project729a.html

	Text: For additional online Programming Projects, click the CodeMate icons below.
	Text3: 14.5
	Text4: 14.4
	code links 2:
	code links 3:
	code links 4:
	code links 6:
	code links 7:
	code links 8:
	code links 9:
	code links 1:
	program project 14:
	5:
	1:
	2:

	code links 10:
	code links 11:

