

CHAPTER

13

Interfaces and Inner Classes

13.1 INTERFACES 633

Interfaces 633

Abstract Classes Implementing Interfaces 635

Derived Interfaces 635

Pitfall: Interface Semantics Are Not Enforced 637

The

Comparable Interface 638

Example: Using the

Comparable Interface 640

Defined Constants in Interfaces 645

Pitfall: Inconsistent Interfaces 646

The

Serializable Interface

✜ 649

The

Cloneable Interface 649

13.2 SIMPLE USES OF INNER CLASSES 653

Helping Classes 654

Tip: Inner and Outer Classes Have Access to Each
Other’s Private Members 654

Example: A Bank Account Class 655

The

.class File for an Inner Class 659

Pitfall: Other Uses of Inner Classes 660

13.3 MORE ABOUT INNER CLASSES

✜ 660

Static Inner Classes 660

Public Inner Classes 661

Tip: Referring to a Method of the Outer Class 663

Nesting Inner Classes 665

Inner Classes and Inheritance 666

Anonymous Classes 666

Tip: Why Use Inner Classes? 667

CHAPTER SUMMARY 669
ANSWERS TO SELF-TEST EXERCISES 670
PROGRAMMING PROJECTS 675

5640_ch13.fm Page 631 Wednesday, February 11, 2004 2:42 PM

13

Interfaces and Inner Classes

Art, it seems to me, should simplify. That, indeed, is
very nearly the whole of the higher artistic process;
finding what conventions of form and what details
one can do without and yet preserve the spirit of the
whole...

Willa Sibert Cather,

On the Art of Fiction

INTRODUCTION

A Java

interface

 specifies a set of methods that any class that implements the
interface must have. An interface is itself a type, which allows you to define
methods with parameters of an interface type and then have the code apply to
all classes that implement the interface. One way to view an interface is as an
extreme form of an abstract class. However, as you will see, an interface allows
you to do more than an abstract class allows you to do. Interfaces are Java’s
way of approximating multiple inheritance. You cannot have multiple base
classes in Java, but interfaces allow you to approximate the power of multiple
base classes.

The second major topic of this chapter is

inner classes.

 An inner class is sim-
ply a class defined within another class. Since inner classes are local to the class
that contains them, they can help make a class self-contained by allowing you
to make helping classes inner classes.

PREREQUISITES

Section 13.1 on interfaces and Section 13.2 on simple uses of inner classes are
independent of each other and can be covered in any order. Section 13.3 on
more subtle details of inner classes requires both Sections 13.1 and 13.2.

Section 13.1 on interfaces requires Chapters 1 through 9. No material from
Chapters 10 through 12 is used anywhere in this chapter.

Section 13.2 on simple uses of inner classes requires Chapters 1 through 5.
It does not use any material from Chapters 6 through 12.

Section 13.3 on more advanced inner class material requires both Sections
13.1 and 13.2 (and of course their prerequisites). The material in Section 13.3
is not used elsewhere in this book.

5640_ch13.fm Page 632 Wednesday, February 11, 2004 2:42 PM

Interfaces 633

Interfaces

Autonomy of Syntax

A linguistic concept attributed to Noam Chomsky

In this section we describe

interfaces.

 An interface is a type that groups together a num-
ber of different classes that all include method definitions for a common set of method
headings.

■ INTERFACES

An interface

 is something like the extreme case of an abstract class.

An interface is not a
class. It is, however, a type that can be satisfied by any class that implements the interface.

An interface is a property of a class that says what methods it must have.

An interface specifies the headings for methods that must be defined in any class
that implements the interface. For example, Display 13.1 shows an interface named

Ordered

. Note that an interface contains only method headings. It contains no instance
variables nor any complete method definitions. (Although, as we will see, it can contain
defined constants.)

 To implement an interface

, a concrete class (that is, a class other than an abstract
class) must do two things:

1. It must include the phrase

implements Interface_Name

at the start of the class definition. To implement more than one interface, you list all
the interface names, separated by commas, as in

implements SomeInterface, AnotherInterface

13.1

interface

Display 13.1 The Ordered Interface

1 public interface Ordered
2 {
3 public boolean precedes(Object other);

4 /**
5 For objects of the class o1 and o2,
6 o1.follows(o2) == o2.preceded(o1).
7 */
8 public boolean follows(Object other);
9 }

Do not forget the semicolons at
the end of the method headings.

Neither the compiler nor the run-time system will do anything to ensure that this comment is
satisfied. It is only advisory to the programmer implementing the interface.

implementing an
interface

5640_ch13.fm Page 633 Wednesday, February 11, 2004 2:42 PM

codes633.html

634 Chapter 13 Interfaces and Inner Classes

2. The class must implement

all

 the method headings listed in the definition(s) of the
interface(s).

For example, to implement the

Ordered

 interface, a class definition must contain the
phrase

implements

Ordered

 at the start of the class definition, as shown in the following:

public class OrderedHourlyEmployee
 extends HourlyEmployee implements Ordered
{

The class must also implement the two methods

precedes

 and

follows

. The full defi-
nition of

OrderedHourlyEmployee

 is given in Display 13.2.

Display 13.2 Implementation of an Interface

1 public class OrderedHourlyEmployee
2 extends HourlyEmployee implements Ordered
3 {
4 public boolean precedes(Object other)
5 {
6 if (other == null)
7 return false;
8 else if (!(other instanceof HourlyEmployee))
9 return false;

10 else
11 {
12 OrderedHourlyEmployee otherOrderedHourlyEmployee =
13 (OrderedHourlyEmployee)other;
14 return (getPay() < otherOrderedHourlyEmployee.getPay());
15 }
16 }

17 public boolean follows(Object other)
18 {
19 if (other == null)
20 return false;
21 else if (!(other instanceof OrderedHourlyEmployee))
22 return false;
23 else
24 {
25 OrderedHourlyEmployee otherOrderedHourlyEmployee =
26 (OrderedHourlyEmployee)other;
27 return (otherOrderedHourlyEmployee.precedes(this));
28 }
29 }
30 }

Although getClass works better than
instanceof for defining equals,
instanceof works better here. However,
either will do for the points being made here.

5640_ch13.fm Page 634 Wednesday, February 11, 2004 2:42 PM

codes634.html

Interfaces 635

Self-Test Exercises

An interface and all of its method headings are normally declared to be public. They
cannot be given private, protected, or package access. (The modifier

public

 may be
omitted, but all the methods will still be treated as if they are public.) When a class
implements an interface, it must make all the methods in the interface public.

An interface is a type. This allows you to write a method with a parameter of an
interface type, such as a parameter of type

Ordered

, and that parameter will accept as
an argument any class you later define that implements the interface.

An interface serves a function similar to a base class, but it is important to note that
it is not a base class. (In fact, it is not a class of any kind.) Some programming lan-
guages (such as C++) allow one class to be a derived class of two or more different base
classes. This is not allowed in Java. In Java, a derived class can have only one base class.
However, in addition to any base class that a Java class may have, it can also implement
any number of interfaces. This allows Java programs to approximate the power of mul-
tiple base classes without the complications that can arise with multiple base classes.

You might want to say the argument to

precedes

 in the

Ordered

 interface (Display
13.2) is the same as the class doing the implementation (for example,

OrderedHourly-

Employee

). There is no way to say this in Java, so we normally make such parameters of
type

Object

. It would be legal to make the argument to

precedes

 of type

Ordered

, but
that is not normally preferable to using

Object

 as the parameter type. If you make the
argument of type

Ordered

, you would still have to handle the case of

null

 and the case
of an argument that (while

Ordered

) is not of type

OrderedHourlyEmployee

.

An interface definition is stored in a

.java

 file and compiled just as a class definition
is compiled.

■ ABSTRACT CLASSES IMPLEMENTING INTERFACES

As you saw in the previous subsection, a concrete class (that is, a regular class) must give
definitions for all the method headings given in an interface in order to implement the
interface. However, you can define an abstract class that implements an interface but
only gives definitions for some of the method headings given in the interface. The
method headings given in the interface that are not given definitions are made into
abstract methods. A simple example is given in Display 13.3.

■ DERIVED INTERFACES

You can derive an interface from a base interface. This is often called extending

 the
interface. The details are similar to deriving a class. An example is given in Display 13.4.

1. Can you have a variable of an interface type? Can you have a parameter of an interface type?

2. Can an abstract class ever implement an interface?

extending an
interface

5640_ch13.fm Page 635 Wednesday, February 11, 2004 2:42 PM

636 Chapter 13 Interfaces and Inner Classes

3. Can a derived class have two base classes? Can it implement two interfaces?

4. Can an interface implement another interface?

Display 13.3 An Abstract Class Implementing an Interface ✜

1 public abstract class MyAbstractClass implements Ordered
2 {
3 int number;
4 char grade;
5
6 public boolean precedes(Object other)
7 {
8 if (other == null)
9 return false;

10 else if (!(other instanceof HourlyEmployee))
11 return false;
12 else
13 {
14 MyAbstractClass otherOfMyAbstractClass =
15 (MyAbstractClass)other;
16 return (this.number < otherOfMyAbstractClass.number);
17 }
18 }

19 public abstract boolean follows(Object other);

20 }

Display 13.4 Extending an Interface

1 public interface ShowablyOrdered extends Ordered
2 {
3 /**
4 Outputs an object of the class that precedes the calling object.
5 */
6 public void showOneWhoPrecedes();
7 }

Neither the compiler nor the run-time system will do
anything to ensure that this comment is satisfied.

A (concrete) class that implements the ShowablyOrdered interface must have a definition for
the method showOneWhoPrecedes and also have definitions for the methods precedes and
follows given in the Ordered interface.

5640_ch13.fm Page 636 Wednesday, February 11, 2004 2:42 PM

codes636b.html
codes636a.html

Interfaces 637

Pitfall

INTERFACE SEMANTICS ARE NOT ENFORCED

As far as the Java compiler is concerned, an interface has syntax but no semantics. For example,
the definition of the

Ordered interface (Display 13.1) says the following in a comment:

/**
 For objects of the class o1 and o2,
 o1.follows(o2) == o2.preceded(o1).
*/

You might have assumed that this is true even if there were no comment in the interface. After all,
in the real world, if I precede you, then you follow me. However, that is giving your intuitive inter-
pretation to the word “

precedes.”

As far as the compiler and run-time systems are concerned, the

Ordered interface merely says
that the methods

precedes and

follows each take one argument of type

Object and return a

boolean value. The interface does not really require that the

boolean value be computed in any
particular way. For example, the compiler would be satisfied if both precedes and follows
always return true or if they always return false. It would even allow the methods to use a ran-
dom number generator to generate a random choice between true and false.

It would be nice if we could safely give an interface some simple semantics, such as saying that
o1.follows(o2) means the same as o2.preceded(o1). However, if Java did allow that, there
would be problems with having a class implement two interfaces or even with having a class

INTERFACES

An interface is a type that specifies method headings (and, as we will see, possibly defined con-
stants as well). The syntax for defining an interface is similar to the syntax of defining a class,
except that the word interface is used in place of class and only the method headings with-
out any method body (but followed by a semicolon) are given.

Note that an interface has no instance variables and no method definitions.

A class can implement any number of interfaces. To implement an interface the class must include

implements Interface_Name

at the end of the class heading and must supply definitions for the method headings given in the
interface. If the class does not supply definitions for all the method headings given in the inter-
face, then the class must be an abstract class and the method headings without definitions must
be abstract methods.

EXAMPLE:

See Displays 13.1, 13.2, and 13.3.

5640_ch13.fm Page 637 Wednesday, February 11, 2004 2:42 PM

638 Chapter 13 Interfaces and Inner Classes

derived from one base class and implementing an interface. Either of these situations could pro-
duce two semantic conditions both of which must be implemented for the same method, and the
two semantics may not be consistent. For example, suppose that (contrary to fact) you could
require that o1.follows(o2) means the same as o2.preceded(o1). You could also define
another interface with an inconsistent semantics, such as saying that precedes always returns
true and that follows always returns false. As long as a class can have two objects, there is
no way a class could implement both of these semantics. Interfaces in Java are very well behaved,
the price of which is that you cannot count on Java to enforce any semantics in an interface.

If you want to require semantics for an interface, you can add it to the documentation, as illus-
trated by the comment in Display 13.1 and the comment in Display 13.4, but always remember that
these are just comments; they are not enforced by either the compiler or the run-time system, so
you cannot necessarily rely on such semantics being followed. However, we live in an imperfect
world, and sometimes you will find that you must specify a semantics for an interface; you do so
in the interface’s documentation. It then becomes the responsibility of the programmers imple-
menting the interface to follow the semantics.

Having made our point about interface semantics not being enforced by the compiler or run-time
system, we want to nevertheless urge you to follow the specified semantics for an interface. Soft-
ware written for classes that implement an interface will assume that any class that implements
the interface does satisfy the specified semantics. So, if you define a class that implements an
interface but does not satisfy the semantics for the interface, then software written for classes that
implement that interface will probably not work correctly for your class.

■ THE Comparable INTERFACE

This subsection requires material on arrays from Chapter 6. If you have not yet covered
Chapter 6, you can skip this section and the following Programming Example without
any loss of continuity. If you have read Chapter 6, you should not consider this section
to be optional.

In Chapter 6 (Display 6.9) we gave a method for sorting a partially filled array of
base type double into increasing order. It is very easy to transform the code into a
method to sort into decreasing order instead of increasing order. (See Self-Test Exercise
18 of Chapter 6 and its answer if this is not clear to you.) It is also easy to modify the

INTERFACE SEMANTICS ARE NOT ENFORCED

When you define a class that implements an interface, the compiler and run-time system will let
you define the body of an interface method any way you want, provided you keep the method
heading as it is given in the interface. However, you should follow the specified semantics for an
interface whenever you define a class that implements that interface; otherwise, software written
for that interface may not work for your class.

5640_ch13.fm Page 638 Wednesday, February 11, 2004 2:42 PM

Interfaces 639

code to obtain methods for sorting integers instead of doubles or sorting strings into
alphabetical order. Although these changes are easy, they seem to be, and in fact are, a
useless nuisance. All these sorting methods will be essentially the same. The only differ-
ences are the types of the values being sorted and the definition of the ordering. It
would seem that we should be able to give a single sorting method that covers all these
cases. The Comparable interface lets us do this.

The Comparable interface is in the java.lang package and so is automatically avail-
able to your program. The Comparable interface has only the following method head-
ing that must be implemented for a class to implement the Comparable interface:

public int compareTo(Object other);

The Comparable interface has a semantics, and it is the programmer’s responsibility
to follow this semantics when implementing the Comparable interface. The semantics
says that compareTo returns

a negative number if the calling object “comes before” the parameter other,

a zero if the calling object “equals” the parameter other,

and a positive number if the calling object “comes after” the parameter other.1

Almost any reasonable notions of “comes before” should be acceptable. In particular,
all of the standard less-than relations on numbers and lexicographic ordering on strings
are suitable ordering for compareTo. (The relationship “comes after” is just the reverse
of “comes before.”) If you need to consider other ordering, the precise rule is that the
ordering must be a total ordering, which means the following rules must be satisfied:

(Irreflexive) For no object o does o come before o.

(Trichotomy) For any two objects o1 and o2, one and only one of the following
holds true: o1 comes before o2, o1 comes after o2, or o1 equals o2.

(Transitivity) If o1 comes before o2 and o2 comes before o3, then o1 comes before o3.

The “equals” of the compareTo method semantics should coincide with the equals
methods if that is possible, but this is not absolutely required by the semantics.

If you define a class that implements the Comparable interface but that does not sat-
isfy these conditions, then code written for Comparable objects will not work properly.
It is the responsibility of you the programmer to ensure that the semantics is satisfied.
Neither the compiler nor the run-time system enforces any semantics on the Compara-
ble interface.

If you have read this subsection, you should also read the following Programming
Example.

1 Since the parameter to CompareTo is of type Object, an argument to CompareTo might not
be an object of the class being defined. If the parameter other is not of the same type as the class
being defined, then the semantics specifies that a ClassCastException should be thrown.

compareTo

5640_ch13.fm Page 639 Wednesday, February 11, 2004 2:42 PM

640 Chapter 13 Interfaces and Inner Classes

Example

USING THE Comparable INTERFACE

Display 13.5 shows a class with a method that can sort any partially filled array whose base type
implements the Comparable interface (including implementing the semantics we discussed in
the previous subsection). To obtain the code in Display 13.5 we started with the sorting code in
Display 6.9 and mechanically replaced all occurrences of the array type double[] with the type
Comparable[] and we replaced all Boolean expressions of the form

Expression_1 < Expression_2

with

Expression_1.compareTo(Expression_2) < 0

We also changed the comments a bit to make them consistent with the compareTo notation. The
changes are highlighted in Display 13.5. Only four small changes to the code were needed.

Display 13.6 shows a demonstration of using the sorting method given in Display 13.5. To under-
stand why the demonstration works, you need to be aware of the fact that both of the classes
Double and String implement the Comparable interface.

If you were to check the full documentation for the class Double you would see that Double
implements the Comparable interface and so has a compareTo method. Moreover, for objects
o1 and o2 of Double,

o1.compareTo(o2) < 0 //o1 "comes before" o2

THE Comparable INTERFACE

The Comparable interface is in the java.lang package and so is automatically available to
your program. The Comparable interface has only the following method heading that must be
given a definition for a class to implement the Comparable interface:

public int compareTo(Object other);

The method compareTo should return

a negative number if the calling object “comes before” the parameter other,

a zero if the calling object “equals” the parameter other,

and a positive number if the calling object “comes after” the parameter other.

The “comes before” ordering that underlies compareTo should be a total ordering. Most normal
ordering, such as less-than ordering on numbers and lexicographic ordering on strings, are total
ordering.

Comparable

5640_ch13.fm Page 640 Wednesday, February 11, 2004 2:42 PM

Interfaces 641

Display 13.5 Sorting Method for Array of Comparable (Part 1 of 2)

1 public class GeneralizedSelectionSort
2 {
3 /**
4 Precondition: numberUsed <= a.length;
5 The first numberUsed indexed variables have values.
6 Action: Sorts a so that a[0, a[1], ... , a[numberUsed − 1] are in
7 increasing order by the compareTo method.
8 */
9 public static void sort(Comparable[] a, int numberUsed)

10 {
11 int index, indexOfNextSmallest;
12 for (index = 0; index < numberUsed − 1; index++)
13 {//Place the correct value in a[index]:
14 indexOfNextSmallest = indexOfSmallest(index, a, numberUsed);
15 interchange(index,indexOfNextSmallest, a);
16 //a[0], a[1],..., a[index] are correctly ordered and these are
17 //the smallest of the original array elements. The remaining
18 //positions contain the rest of the original array elements.
19 }
20 }

21 /**
22 Returns the index of the smallest value among
23 a[startIndex], a[startIndex+1], ... a[numberUsed − 1]
24 */
25 private static int indexOfSmallest(int startIndex,
26 Comparable[] a, int numberUsed)
27 {
28 Comparable min = a[startIndex];
29 int indexOfMin = startIndex;
30 int index;
31 for (index = startIndex + 1; index < numberUsed; index++)
32 if (a[index].compareTo(min) < 0)//if a[index] is less than min
33 {
34 min = a[index];
35 indexOfMin = index;
36 //min is smallest of a[startIndex] through a[index]
37 }
38 return indexOfMin;
39 }

5640_ch13.fm Page 641 Wednesday, February 11, 2004 2:42 PM

codes641.html

642 Chapter 13 Interfaces and Inner Classes

Display 13.5 Sorting Method for Array of Comparable (Part 2 of 2)

 /**
 Precondition: i and j are legal indices for the array a.
 Postcondition: Values of a[i] and a[j] have been interchanged.
 */
 private static void interchange(int i, int j, Comparable[] a)
 {
 Comparable temp;
 temp = a[i];
 a[i] = a[j];
 a[j] = temp; //original value of a[i]
 }

}

Display 13.6 Sorting Arrays of Comparable (Part 1 of 2)

1 /**
2 Demonstrates sorting arrays for classes that
3 implement the Comparable interface.
4 */
5 public class ComparableDemo
6 {
7 public static void main(String[] args)
8 {
9 Double[] d = new Double[10];

10 for (int i = 0; i < d.length; i++)
11 d[i] = new Double(d.length − i);

12 System.out.println("Before sorting:");
13 int i;
14 for (i = 0; i < d.length; i++)
15 System.out.print(d[i].doubleValue() + ", ");
16 System.out.println();

17 GeneralizedSelectionSort.sort(d, d.length);

18 System.out.println("After sorting:");
19 for (i = 0; i < d.length; i++)
20 System.out.print(d[i].doubleValue() + ", ");
21 System.out.println();

The classes Double and String do
implement the Comparable interface.

5640_ch13.fm Page 642 Wednesday, February 11, 2004 2:42 PM

codes642.html

Interfaces 643

means the same thing as

o1.doubleValue() < o2.doubleValue()

So, the implementation of the Comparable interface for the class Double is really just the ordi-
nary less-than relationship on the double values corresponding to the Double objects.

Similarly, if you were to check the full documentation for the class String, you would see that
String implements the Comparable interface and so has a compareTo method. Moreover, the
implementation of the compareTo method for the class String is really just the ordinary lexico-
graphic relationship on the strings.

Display 13.6 Sorting Arrays of Comparable (Part 2 of 2)

22 String[] a = new String[10];
23 a[0] = "dog";
24 a[1] = "cat";
25 a[2] = "cornish game hen";
26 int numberUsed = 3;

27 System.out.println("Before sorting:");
28 for (i = 0; i < numberUsed; i++)
29 System.out.print(a[i] + ", ");
30 System.out.println();
31
32 GeneralizedSelectionSort.sort(a, numberUsed);

33 System.out.println("After sorting:");
34 for (i = 0; i < numberUsed; i++)
35 System.out.print(a[i] + ", ");
36 System.out.println();
37 }
38 }

SAMPLE DIALOGUE

Before Sorting
10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0,
After sorting:
1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0,
Before sorting;
dog, cat, cornish game hen,
After sorting:
cat, cornish game hen, dog,

5640_ch13.fm Page 643 Wednesday, February 11, 2004 2:42 PM

644 Chapter 13 Interfaces and Inner Classes

Self-Test Exercises

This Programming Example used the standard library classes Double and String for the base
type of the array. You can do the same thing with arrays whose base class is a class you defined,
so long as the class implements the Comparable interface (including the standard semantics,
which we discussed earlier).

This Programming Example does point out one restriction on interfaces. They can only apply to
classes. A primitive type cannot implement an interface. So, in Display 13.6 we could not sort an
array with base type double using the sorting method for an array of Comparable. We had to
settle for sorting an array with base type Double. This is a good example of using a wrapper class
with its “wrapper class personality.”

These exercises are for the material on the Comparable interface.

5. The method interchange in Display 13.5 makes no use of the fact that its second argu-
ment is an array with base type Comparable. Suppose we change the parameter type Com-
parable[] to Object[] and change the type of the variable temp to Object. Would the
program in Display 13.6 produce the same dialog?

6. Is the following a suitable implementation of the Comparable interface?

public class Double2 implements Comparable
{
 private double value;

 public Double2(double theValue)
 {
 value = theValue;
 }

 public int compareTo(Object other)
 {
 return −1;
 }

 public double doubleValue()
 {
 return value;
 }
}

You can think of the underlying “comes before” relationship as saying that for any objects
d1 and d2, d1 comes before d2.

5640_ch13.fm Page 644 Wednesday, February 11, 2004 2:42 PM

Interfaces 645

7. Suppose you have a class Circle that represents circles all of whose centers are at the same
point. (To make it concrete you can take the circles to be in the usual x,y plain and to all
have their centers at the origin.) Suppose there is a boolean valued method inside of the
class Circle such that, for circles c1 and c2,

c1.inside(c2)

returns true if c1 is completely inside of c2 (and c2 is not the same as c1). Is the following
a total ordering?

c1 comes before c2 if c1 is inside of c2
(that is, if c1.inside(c2) returns true).

You could represent objects of the class Circle by a single value of type double that gives
the radius of the circle, but the answer does not depend on such details.

■ DEFINED CONSTANTS IN INTERFACES

The designers of Java often used the interface mechanism to take care of a number of
miscellaneous details that do not really fit the spirit of what an interface is supposed to
be. One example of this is the use of an interface as a way to name a group of defined
constants.

An interface can contain defined constants as well as method headings or instead of
method headings. When a method implements the interface, it automatically gets the
defined constants. For example, the following interface defines constants for months:

public interface MonthNumbers
{
 public static final int JANUARY = 1,
 FEBRUARY = 2, MARCH = 3, APRIL = 4, MAY = 5,
 JUNE = 6, JULY = 7, AUGUST = 8, SEPTEMBER = 9,
 OCTOBER = 10, NOVERMBER = 11, DECEMBER = 12;
}

Any class that implements the MonthNumbers interface will automatically have the 12
constants defined in the MonthNumbers interface. For example, consider the following
toy class:

public class DemoMonthNumbers implements MonthNumbers
{
 public static void main(String[] args)
 {
 System.out.println(
 "The number for January is " + JANUARY);
 }
}

5640_ch13.fm Page 645 Wednesday, February 11, 2004 2:42 PM

646 Chapter 13 Interfaces and Inner Classes

Pitfall

Note that the constant JANUARY is used in the class DemoMonthNumbers but is not
defined there. The class DemoMonthNumbers automatically gets the month constants
because it implements the MonthNumbers interface.

An interface cannot have instance variables, although it can use the syntax for
instance variables as a way to define constants. Any variables defined in an interface
must be public, static, and final, so Java allows you to omit those modifiers. The follow-
ing is an equivalent definition of the interface MonthNumbers:

public interface MonthNumbers
{
 int JANUARY = 1,
 FEBRUARY = 2, MARCH = 3, APRIL = 4, MAY = 5,
 JUNE = 6, JULY = 7, AUGUST = 8, SEPTEMBER = 9,
 OCTOBER = 10, NOVERMBER = 11, DECEMBER = 12;
}

Thus, an interface can be used to give a name for a group of defined constants, so
that you can easily add the needed constants to any class by implementing the inter-
face. This is really a different use for interfaces than what we have seen before, which
was to use interfaces to specify method headings. It is legal to mix these two uses by
including both defined constants and method headings in a single interface.

INCONSISTENT INTERFACES

Java allows a class to have only one base class but also allows it to implement any number of
interfaces. The reason that a class can have only one base class is that if Java allowed two base
classes, the two base classes could provide different and inconsistent definitions of a single
method heading. Since interfaces have no method bodies at all, this problem cannot arise when a
class implements two interfaces. The ideal that the designers of Java apparently hoped to realize
was that any two interfaces will always be consistent. However, this ideal was not fully realized.
Although it is a rare phenomenon, two interfaces can be inconsistent. In fact, there is more than
one kind of inconsistency that can be exhibited. If you write a class definition that implements
two inconsistent interfaces, that is an error and the class definition is illegal. Let’s see how two
interfaces can be inconsistent.

The most obvious way that two interfaces can be inconsistent is by defining two constants with
the same name but with different values. For example:

public interface Interface1
{
 int ANSWER = 42;
}

public interface Interface2

no instance
variables

inconsistent
constants

5640_ch13.fm Page 646 Wednesday, February 11, 2004 2:42 PM

Interfaces 647

Self-Test Exercises

{
 int ANSWER = 0;
}

Suppose a class definition begins with

public class MyClass
 implements Interface1, Interface2
{ ...

Clearly this has to be, and is, illegal. The defined constant ANSWER cannot be simultaneously 42
and 0.2

Even two method headings can be inconsistent. For example, consider the following two interfaces:

public interface InterfaceA
{
 public int getStuff();
}

public interface InterfaceB
{
 public String getStuff();
}

Suppose a class definition begins with

public class YourClass
 implements InterfaceA, InterfaceB
{ ...

Clearly this has to be, and is, illegal. The method getStuff in the class YourClass cannot be
simultaneously a method that returns an int and a method that returns a value of type String.
(Remember that you cannot overload a method based on the type returned; so, overloading can-
not be used to get around this problem.)

8. Will the following program compile? If it does compile will it run? Interface1 and
Interface2 were defined in the previous subsection.

public class MyClass
 implements Interface1, Interface2
{

2 If the class never uses the constant ANSWER, then there is no inconsistency and the class will
compile and run with no error messages.

inconsistent
method headings

5640_ch13.fm Page 647 Wednesday, February 11, 2004 2:42 PM

648 Chapter 13 Interfaces and Inner Classes

 public static void main(String[] args)
 {
 System.out.println(ANSWER);
 }
}

9. Will the following program compile? If it does compile will it run? Interface1 and
Interface2 were defined in the previous subsection.

public class MyClass
 implements Interface1, Interface2
{
 public static void main(String[] args)
 {
 System.out.println("Hello");
 }
}

10. Will the following program compile? If it does compile will it run? InterfaceA and
InterfaceB were defined in the previous subsection.

public class YourClass
 implements InterfaceA, InterfaceB
{
 public String getStuff()
 {
 return "one";
 }
}

11. Will the following two interfaces and the following program class compile? If they compile
will the program run with no error messages?

public interface InterfaceA
{
 public int getStuff();
}

public interface InterfaceOtherB
{
 public String getStuff(String someStuff);

}

public class OurClass
 implements InterfaceA, InterfaceOtherB
{

5640_ch13.fm Page 648 Wednesday, February 11, 2004 2:42 PM

Interfaces 649

 private int intStuff = 42;

 public static void main(String[] args)
 {
 OurClass object = new OurClass();
 System.out.println(object.getStuff()
 + object.getStuff(" Hello"));
 }

 public int getStuff()
 {
 return intStuff;
 }

 public String getStuff(String someStuff)
 {
 return someStuff;
 }
}

■ THE Serializable INTERFACE ✜

As we have already noted, the designers of Java often used the interface mechanism to
take care of miscellaneous details that do not really fit the spirit of what an interface is
supposed to be. An extreme example of this is the Serializable interface. The Serial-
izable interface has no method headings and no defined constants. As a traditional
interface it is pointless. However, Java uses it as a type tag that means the programmer
gives permission to the system to implement file I/O in a particular way. If you want to
know what that way of implementing file I/O is, see Chapter 10, in which the Serial-
izable interface is discussed in detail.

■ THE Cloneable INTERFACE

The Cloneable interface is another example where Java uses the interface mechanism
for something other than its traditional role. The Cloneable interface has no method
headings that must be implemented (and has no defined constants). However, it is used
to say something about how the method clone, which is inherited from the class
Object, should be used and how it should be redefined.

So, what is the purpose of the Cloneable interface? When you define a class to
implement the Cloneable interface, you are agreeing to redefine the clone method
(inherited from Object) in a particular way. The primary motivation for this appears to
be security issues. Cloning can potentially copy supposedly private data if not done
correctly. Also, some software may depend on your redefining the clone method in a
certain way. Programmers have strong and differing views on how to handle cloning
and the Cloneable interface. What follows is the official Java line on how to do it.

Serializable

Cloneable

5640_ch13.fm Page 649 Wednesday, February 11, 2004 2:42 PM

650 Chapter 13 Interfaces and Inner Classes

The method Object.clone() does a bit-by-bit copy of the object’s data in storage. If
the data is all primitive type data or data of immutable class types, such as String, then
this works fine and has no unintended side effects. However, if the data in the object
includes instance variables whose type is a mutable class, then this would cause what we
refer to as privacy leaks. (See the Pitfall section entitled “Privacy Leaks” in Chapter 5.)
So, when implementing the Cloneable interface for a class, you should invoke the
clone method of the base class Object (or whatever the base class is) and then change
the new instance variables whose type is a mutable class. There are also issues of excep-
tion handling to deal with. An example may be clearer than an abstract discussion.

Let’s start with the simple case. Suppose your class has no instance variables of a
mutable class type, or to phrase it differently, suppose your class has instance variables
all of whose types are either a primitive type or an immutable class type, like String.
And to make it even simpler, suppose your class has no specified base class, so the base
class is Object. If you want to implement the Cloneable interface, you should define
the clone method as in Display 13.7.

The try-catch blocks are required because the inherited method clone can throw
the exception CloneNotSupportedException if the class does not implement the
Cloneable interface. Of course, in this case the exception will never be thrown, but the
compiler will still insist on the try-catch blocks.

Now let’s suppose your class has one instance variable of a mutable class type named
DataClass. Then, the definition of the clone method should be as in Display 13.8.

Display 13.7 Implementation of the Method clone (Simple Case)

1 public class YourCloneableClass implements Cloneable
2 {
3 .
4 .
5 .
6 public Object clone()
7 {
8 try
9 {

10 return super.clone();//Invocation of clone
11 //in the base class Object
12 }
13 catch(CloneNotSupportedException e)
14 {//This should not happen.
15 return null; //To keep the compiler happy.
16 }
17 }
18 .
19 .
20 .
21 }

Works correctly if each instance variable is of a
primitive type or of an immutable type like String.

5640_ch13.fm Page 650 Wednesday, February 11, 2004 2:42 PM

codes650.html

Interfaces 651

First a bit-by-bit

copy

 of the object is made by the invocation of

super.clone()

. The
dangerous part of

copy

 is the reference to the mutable object in the instance variable

someVariable

. So, the reference is replaced by a reference to a copy of the object named
by

someVariable

. This is done with the line

 copy.someVariable = (DataClass)someVariable.clone();

The object named by

copy

 is now safe and so can be returned by the

clone

 method.

If there are more instance variables that have a mutable class type, then you repeat
what we did for

someVariable

 for each of the mutable instance variables.

This requires that any mutable class type for an instance variable, such as the class

DataClass

, also correctly implement the

Cloneable

 interface. So, the definition of

DataClass

 should also follow the model of Display 13.7 or Display 13.8, whichever is
appropriate. Similarly, any mutable class for instance variables in

DataClass

 must
properly implement the

Cloneable

 interface, and so forth.

The designers of Java did make some effort to force you to implement the

Clone-

able

 interface for instance variable classes like

DataClass

 in Display 13.8. The method

clone

 of the class

Object

 is marked

protected

. If you do not override the

clone

Display 13.8 Implementation of the Method clone (Harder Case)

1 public class YourCloneableClass2 implements Cloneable
2 {
3 private DataClass someVariable;
4 .
5 .
6 .
7 public Object clone()
8 {
9 try

10 {
11 YourCloneableClass2 copy =
12 (YourCloneableClass2)super.clone();
13 copy.someVariable = (DataClass)someVariable.clone();
14 return copy;
15 }
16 catch(CloneNotSupportedException e)
17 {//This should not happen.
18 return null; //To keep the compiler happy.
19 }
20 }
21 .
22 .
23 .
24 }

DataClass is a mutable class. Any other
instance variables are each of a primitive type or
of an immutable type like String.

The class DataClass must also properly implement the
Cloneable interface including defining the clone method
as we are describing.

5640_ch13.fm Page 651 Tuesday, February 17, 2004 5:35 PM

codes651.html

652 Chapter 13 Interfaces and Inner Classes

Self-Test Exercises

method in DataClass so that clone is public, then the code in Display 13.8 will give a
compiler error message saying that the following is illegal because DataClass.clone is
protected (as inherited from Object):

copy.someVariable = (DataClass)someVariable.clone();

This is some check but not a strong check. If you do not implement the Cloneable
interface for DataClass but you define clone in DataClass in any way at all, so long as
it is public, then you will not get this error message. You the programmer have the
responsibility to implement the Cloneable interface as specified in the Java documenta-
tion, but the enforcement of this is spotty.

The same basic technique applies if your class is derived from some class other than
Object, except that, in this case, there normally is no required exception handling. To
implement the Cloneable interface in a derived class with a base class other than
Object, the details are as follows: The base class must properly implement the Clone-
able interface, and the derived class must take care of any mutable class instance vari-
able added in the definition of the derived class. These new mutable class instance
variables are handled by the technique shown in Display 13.8 for the instance variable
someVariable. As long as the base class properly implements the Cloneable interface,
including defining the clone method as we are describing, then the derived class’s
clone method need not worry about any inherited instance variables. Usually, you need
not have try and catch blocks for CloneNotSupportedException because the base class
clone method, super.clone(), normally catches all its CloneNotSupportedExceptions
and so super.clone() will never throw a CloneNotSupportedException. (See Self-Test
Exercise 13 for an example.)

12. Modify the following class definition so it correctly implements the Cloneable interface
(all the instance variables are shown):

public class StockItem
{
 private int number;
 private String name;
 public void setNumber(int newNumber)
 {
 number = newNumber;
 }
 ...
}

13. Modify the following class definition so it correctly implements the Cloneable interface
(all the new instance variables are shown):

public class PricedItem extends StockItem
{

5640_ch13.fm Page 652 Wednesday, February 11, 2004 2:42 PM

Simple Uses of Inner Classes 653

 private double price;

 ...
}

14. Modify the following class definition so it correctly implements the Cloneable interface
(all the instance variables are shown):

public class Record
{
 private StockItem item1;
 private StockItem item2;
 private String description;

 ...
}

15. Modify the following class definition so it correctly implements the Cloneable interface
(all the new instance variables are shown):

public class BigRecord extends Record
{
 private StockItem item3;

 ...
}

16. Modify the definition of the class Date (Display 4.11) so it implements the Cloneable
interface. Be sure to define the method clone in the style of Display 13.7.

17. Modify the definition of the class Employee (Display 7.2) so it implements the Cloneable
interface. Be sure to define the method clone in the style of Display 13.8.

18. Modify the definition of the class HourlyEmployee (Display 7.3) so it implements the
Cloneable interface. Be sure to define the method clone in the style of Display 13.8.

Simple Uses of Inner Classes
The ruling ideas of each age have ever been the ideas of
its ruling class.

Karl Marx and Friedrich Engels, The Communist Manifesto

Inner classes are classes defined within other classes. In this section, we will describe one
of the most useful applications of inner classes, namely, inner classes used as helping
classes.

13.2

5640_ch13.fm Page 653 Wednesday, February 11, 2004 2:42 PM

654 Chapter 13 Interfaces and Inner Classes

Tip

■ HELPING CLASSES

Defining an inner class is straightforward; simply include the definition of the inner
class within another class, as follows:

public class OuterClass
{
 private class InnerClass
 {
 Declarations_of_InnerClass_Instance_Variables
 Definitions_of_InnerClass_Methods
 }

 Declarations_of_OuterClass_Instance_Variables
 Definitions_of_OuterClass_Methods
}

As this outline suggests, the class that includes the inner class is called an outer class.
The definition of the inner class (or classes) need not be the first item(s) of the outer
class, but it is good to place it either first or last so that it is easy to find. The inner class
need not be private, but that is the only case we will consider in this section. We will
consider other modifiers besides private in Section 13.3.

An inner class definition is a member of the outer class in the same way that the
instance variables of the outer class and the methods of the outer class are members of
the outer class. Thus, an inner class definition is local to the outer class definition. So
you may reuse the name of the inner class for something else outside the definition of
the outer class. If the inner class is private, as ours will always be in this section, then
the inner class cannot be accessed by name outside the definition of the outer class.

There are two big advantages to inner classes. First, because they are defined within
a class, they can be used to make the outer class self-contained or more self-contained
than it would otherwise be. The second advantage is that the inner and outer classes’
methods have access to each other’s private methods and private instance variables.

INNER AND OUTER CLASSES HAVE ACCESS TO EACH OTHER’S
PRIVATE MEMBERS

Within the definition of a method of an inner class, it is legal to reference a private instance vari-
able of the outer class and to invoke a private method of the outer class. To facilitate this, Java fol-
lows this convention: If a method is invoked in an inner class and the inner class has no such
method, then it is assumed to be an invocation of the method by that name in the outer class. (If
the outer class also has no method by that name, that is, of course, an error.) Similarly, an inner
class can use the name of an instance variable of the outer class.

inner class

outer class

5640_ch13.fm Page 654 Wednesday, February 11, 2004 2:42 PM

Simple Uses of Inner Classes 655

Example

The reverse situation, invoking a method of the inner class from the outer class, is not so simple.
To invoke a (nonstatic) method of the inner class from within a method of the outer class, you
need an object of the inner class to use as a calling object, as we did in Display 13.9 (Part 2).

As long as you are within the definition of the inner or outer classes, the modifiers public and
private (used within the inner or outer classes) are equivalent.

These sorts of invocations and variable references that cross between inner and outer classes can
get confusing. So, it is best to confine such invocations and variable references to cases that are
clear and straightforward. It is easy to tie your code in knots if you get carried away with this sort
of thing.

A BANK ACCOUNT CLASS

Display 13.9 contains a simplified bank account program with an inner class for amounts of
money. The bank account class uses values of type String to obtain or return amounts of
money, such as the amount of a deposit or the answer to a query for the account balance. How-
ever, inside the class it stores amounts of money as values of type Money, which is an inner class.
Values of type Money are not stored as Strings, which would be difficult to do arithmetic on,
nor are they stored as values of type double, which would allow round-off errors that would not
be acceptable in banking transactions. Instead, the class Money stores amounts of money as two
integers, one for the dollars and one for the cents. In a real banking program, the class Money
might have a larger collection of methods, such as methods to do addition, subtraction, and
compute percentages, but in this simple example we have only included the method for adding
an amount of money to the calling object. The outer class BankAccount would also have more
methods in a real class, but here we have only included methods to deposit an amount of money
to the account and to obtain the account balance. Display 13.10 contains a simple demonstration
program using the class BankAccount.

The class Money is a private inner class of the class BankAccount. So, the class Money cannot be
used outside of the class BankAccount. (Public inner classes are discussed in Section 13.3 and
have some subtleties involved in their use.) Since the class Money is local to the class Bank-
Account, the name Money can be used for the name of another class outside of the class
BankAccount. (This would be true even if Money were a public inner class.)

ACCESS PRIVILEGES BETWEEN INNER AND OUTER CLASSES

Inner and outer classes have access to each other’s private members.

5640_ch13.fm Page 655 Wednesday, February 11, 2004 2:42 PM

656 Chapter 13 Interfaces and Inner Classes

Display 13.9 Class with an Inner Class (Part 1 of 2)

1 public class BankAccount
2 {
3 private class Money
4 {
5 private long dollars;
6 private int cents;

7 public Money(String stringAmount)
8 {
9 abortOnNull(stringAmount);

10 int length = stringAmount.length();
11 dollars = Long.parseLong(
12 stringAmount.substring(0, length − 3));
13 cents = Integer.parseInt(
14 stringAmount.substring(length − 2, length));
15 }

16 public String getAmount()
17 {
18 if (cents > 9)
19 return (dollars + "." + cents);
20 else
21 return (dollars + ".0" + cents);
22 }

23 public void addIn(Money secondAmount)
24 {
25 abortOnNull(secondAmount);
26 int newCents = (cents + secondAmount.cents)%100;
27 long carry = (cents + secondAmount.cents)/100;
28 cents = newCents;
29 dollars = dollars + secondAmount.dollars + carry;
30 }

31 private void abortOnNull(Object o)
32 {
33 if (o == null)
34 {
35 System.out.println("Unexpected null argument.");
36 System.exit(0);
37 }
38 }
39 }

The modifier private in this line should
not be changed to public.
However, the modifiers public and
private inside the inner class Money
can be changed to anything else and it
would have no effect on the class
BankAccount.

The definition of the inner class ends here, but the definition of
the outer class continues in Part 2 of this display.

5640_ch13.fm Page 656 Wednesday, February 11, 2004 2:42 PM

codes656.html

Simple Uses of Inner Classes 657

Display 13.9 Class with an Inner Class (Part 2 of 2)

40 private Money balance;

41 public BankAccount()
42 {
43 balance = new Money("0.00");
44 }

45 public String getBalance()
46 {
47 return balance.getAmount();
48 }

49 public void makeDeposit(String depositAmount)
50 {
51 balance.addIn(new Money(depositAmount));
52 }

53 public void closeAccount()
54 {
55 balance.dollars = 0;
56 balance.cents = 0;
57 }
58 }

This invocation of the inner class method
getAmount() would be allowed even if
the method getAmount() were marked
as private.

Notice that the outer class has access to the
private instance variables of the inner class.

This class would normally have more methods, but we have only
included the methods we need to illustrate the points covered here.

To invoke a nonstatic method of the inner class
outside of the inner class, you need to create an
object of the inner class.

Display 13.10 Demonstration Program for the Class BankAccount (Part 1 of 2)

1 public class BankAccountDemo
2 {
3 public static void main(String[] args)
4 {
5 System.out.println("Creating a new account.");
6 BankAccount account = new BankAccount();
7 System.out.println("Account balance now = $"
8 + account.getBalance());

9 System.out.println("Depositing $100.00");
10 account.makeDeposit("100.00");
11 System.out.println("Account balance now = $"
12 + account.getBalance());

5640_ch13.fm Page 657 Wednesday, February 11, 2004 2:42 PM

codes657.html

658 Chapter 13 Interfaces and Inner Classes

We have made the instance variables in the class Money public or private following our usual
conventions for class members. When we discuss public inner classes, this will be important.
However, for use within the outer class (and a private inner class cannot be used anyplace else),
there is no difference between public and private or other member modifiers. All instance
variables and all methods of the inner class are public to the outer class no matter whether they
are marked public or private or are left unmarked. Notice the method closeAccount of the
outer class. It uses the private instance variables dollars and cents of the inner class.

This is still very much a toy example, but we will have occasion to make serious use of private
inner classes when we discuss linked lists in Chapter 14 and when we study Swing GUIs in Chapters
16 and 18.

Display 13.10 Demonstration Program for the Class BankAccount (Part 2 of 2)

13 System.out.println("Depositing $99.99");
14 account.makeDeposit("99.99");
15 System.out.println("Account balance now = $"
16 + account.getBalance());

17 System.out.println("Depositing $0.01");
18 account.makeDeposit("0.01");
19 System.out.println("Account balance now = $"
20 + account.getBalance());

21 System.out.println("Closing account.");
22 account.closeAccount();
23 System.out.println("Account balance now = $"
24 + account.getBalance());
25 }
26 }

SAMPLE DIALOGUE

Creating a new account.
Account balance now = $0.00
Depositing $100.00
Account balance now = $100.00
Depositing $99.99
Account balance now = $199.99
Depositing $0.01
Account balance now = $200.00
Closing account.
Account balance now = $0.00

5640_ch13.fm Page 658 Wednesday, February 11, 2004 2:42 PM

Simple Uses of Inner Classes 659

Self-Test Exercises

19. Would the following invocation of getAmount in the method getBalance of the outer
class BankAccount still be legal if we change the method getAmount of the inner class
Money from public to private?

public String getBalance()
{
 return balance.getAmount();
}

20. Since it does not matter if we make the members of a private inner class public or private,
can we simply omit the public or private modifiers from the instance variables and
methods of a private inner class?

21. Would it be legal to add the following method to the inner class Money in Display 13.9?
Remember, the question is would it be legal, not would it be sensible.

public void doubleBalance()
{
 balance.addIn(balance);
}

22. Would it be legal to add the following method to the inner class Money in Display 13.9?
Remember, the question is would it be legal, not would it be sensible.

public void doubleBalance2()
{
 makeDeposit(balance.getAmount());
}

■ THE .class FILE FOR AN INNER CLASS

When you compile any class in Java, that produces a .class file. When you compile a
class with an inner class, that compiles both the outer class and the inner class and pro-
duces two .class files. For example, when you compile the class BankAccount in Dis-
play 13.9, that produces the following two .class files:

BankAccount.class and BankAccount$Money.class

HELPING INNER CLASSES

You may define a class within another class. The inside class is called an inner class. A common
and simple use of an inner class is to use it as a helping class for the outer class, in which case the
inner class should be marked private.

5640_ch13.fm Page 659 Wednesday, February 11, 2004 2:42 PM

660 Chapter 13 Interfaces and Inner Classes

Pitfall

If BankAccount had two inner classes, then three .class files would be produced.

OTHER USES OF INNER CLASSES

In this section we have shown you how to use an inner class in only one way, namely to create and
use objects of the inner class from within the outer class method definitions. There are other ways
to use inner classes, but they can involve subtleties. If you intend to use inner classes in any of
these other ways, you should consult Section 13.3.

More about Inner Classes
Something deeply hidden had to be behind things.

Albert Einstein, Note quoted in New York Times Magazine (August 2, 1964)

In this section we cover some of the more subtle details about using inner classes. It
might be best to treat this section as a reference section and look up the relevant cases as
you need them. None of the material in this section is used in the rest of this book.

■ STATIC INNER CLASSES

A normal (nonstatic) inner class, which is the kind of inner class we have discussed so
far, has a connection between each of its objects and the object of the outer class that
created the inner class object. Among other things, this allows an inner class definition
to reference an instance variable or invoke a method of the outer class. If you do not
need this connection, you can make your inner class static by adding the static mod-
ifier to your inner class definition, as illustrated by the following sample beginning of a
class definition:

public class OuterClass
{
 private static class InnerClass
 {

A static inner class can have nonstatic instance variables and methods, but an object of
a static inner class has no connection to an object of the outer class.

You may encounter situations where you need an inner class to be static. For exam-
ple, if you create an object of the inner class within a static method of the outer class,
then the inner class must be static. This follows from the fact that a nonstatic inner
class object must arise from an outer class object.

13.3

static

 ✜

5640_ch13.fm Page 660 Wednesday, February 11, 2004 2:42 PM

More about Inner Classes 661

Self-Test Exercises

Also, if you want your inner class to itself have static members, then the inner class
must be static.

Since a static inner class has no connection to an object of the outer class, you can-
not reference an instance variable or invoke a nonstatic method of the outer class
within the static inner class.

To invoke a static method of a static inner class within the outer class, simply preface
the method name with the name of the inner class and a dot. Similarly, to name a static
variable of a static inner class within the outer class, simply preface the static variable
name with the name of the inner class and a dot.

23. Can you have a static method in a nonstatic inner class?

24. Can you have a nonstatic method in a static inner class?

■ PUBLIC INNER CLASSES

If an inner class is marked with the public modifier instead of the private modifier,
then it can be used in all the ways we discussed so far, but it can also be used outside of
the outer class.

The way that you create an object of the inner class outside of the outer class is a bit
different for static and nonstatic inner classes. We consider the case of a nonstatic inner
class first. When creating an object of a nonstatic inner class, you need to keep in mind
that every object of the nonstatic inner class is associated with some object of the outer
class. To put it another way, to create an object of the inner class, you must start with
an object of the outer class. This has to be true, since an object of the inner class may
invoke a method of the outer class or reference an instance variable of the outer class,
and you cannot have an instance variable of the outer class unless you have an object of
the outer class.

For example, if you change the class Money in Display 13.9 from private to public, so
the class definition begins

public class BankAccount
{
 public class Money

STATIC INNER CLASS

A static inner class is one that is not associated with an object of the outer class. It is indicated by
including the modifier static in its class heading.

public inner class

5640_ch13.fm Page 661 Wednesday, February 11, 2004 2:42 PM

662 Chapter 13 Interfaces and Inner Classes

then you can use an object of the nonstatic inner class Money outside of the class
BankAccount as illustrated by the following:

BankAccount account = new BankAccount();
BankAccount.Money amount =
 account.new Money("41.99");
System.out.println(amount.getAmount());

This code produces the output

41.99

Note that the object amount of the inner class Money is created starting with an object,
account, of the outer class BankAccount, as follows:

BankAccount.Money amount =
 account.new Money("41.99");

Also, note that the syntax of the second line is not

new account.Money("41.99"); //Incorrect syntax

Within the definition of the inner class Money, an object of the inner class can invoke
a method of the outer class. However, this is not true outside of the inner class. Outside
of the inner class an object of the inner class can only invoke methods of the inner
class. So, we could not have continued the previous sample code (which is outside the
class BankAccount and so outside the inner class Money) with the following:

System.out.println(amount.getBalance()); //Illegal

The meaning of amount.getBalance() is clear, but it is still not allowed. If you want
something equivalent to amount.getBalance(), you should use the corresponding object
of the class BankAccount; in this case, you would use account.getBalance(). (Recall that
account is the BankAccount object used to create the inner class object amount.)

Now let’s consider the case of a static inner class. You can create objects of a public
static inner class and do so outside of the inner class, in fact even outside of the outer
class. To do so outside of the outer class, the situation is similar to, but not exactly the
same as, what we outlined for nonstatic inner classes. Consider the following outline:

public class OuterClass
{
 public static class InnerClass
 {
 public void nonstaticMethod()
 { ... }

 public static void staticMethod()
 { ... }

5640_ch13.fm Page 662 Wednesday, February 11, 2004 2:42 PM

More about Inner Classes 663

Tip

 Other_Members_of_InnerClass
 }

 Other_Members_of_OuterClass
}

You can create an object of the inner class outside of the outer class as in the following
example:

OuterClass.InnerClass innerObject =
 new OuterClass.InnerClass();

Note that the syntax is not

OuterClass.new InnerClass();

This may seem like an apparent inconsistency with the syntax for creating the object of
a nonstatic inner class. It may help to keep in mind that for a static inner class, Outer-
Class.InnerClass is a well-specified class name and all the information for the object
is in that class name. To remember the syntax for a nonstatic inner class, remember that
for that case, the object of the outer class modifies how the new operator works to create
an object of the inner class.

Once you have created an object of the inner class, the object can invoke a nonstatic
method in the usual way. For example:

innerObject.nonstaticMethod();

You can also use the object of the inner class to invoke a static method in the same
way. For example:

innerObject.staticMethod();

However, it is more common, and clearer, to use class names when invoking a static
method. For example:

OuterClass.InnerClass.staticMethod();

REFERRING TO A METHOD OF THE OUTER CLASS

As we’ve already noted, if a method is invoked in an inner class and the inner class has no such
method, then it is assumed to be an invocation of the method by that name in the outer class. For
example, we could add a method showBalance to the inner class Money in Display 13.9, as out-
lined in what follows:

public class BankAccount
{

5640_ch13.fm Page 663 Wednesday, February 11, 2004 2:42 PM

664 Chapter 13 Interfaces and Inner Classes

Self-Test Exercises

 private class Money
 {
 private long dollars;
 private int cents;

 public void showBalance()
 {
 System.out.println(getBalance());
 }
 ...
 }//End of Money

 public String getBalance()
 {...}
 ...
}//End of BankAccount

This invocation of getBalance is within the definition of the inner class Money. But, the inner
class Money has no method named getBalance, so it is presumed to be the method getBal-
ance of the outer class BankAccount.

But, suppose the inner class did have a method named getBalance; then, this invocation of
getBalance would be an invocation of the method getBalance defined in the inner class.

If both the inner and outer classes have a method named getBalance, then you can specify that
you mean the method of the outer class as follows:

public void showBalance()
{
 System.out.println(
 BankAccount.this.getBalance());
}

The syntax

Outer_Class_Name.this.Method_Name

always refers to a method of the outer class. In the example, BankAccount.this means the
this of BankAccount, as opposed to the this of the inner class Money.

25. Consider the following class definition:

public class OuterClass
{
 public static class InnerClass

5640_ch13.fm Page 664 Wednesday, February 11, 2004 2:42 PM

More about Inner Classes 665

 {
 public static void someMethod()
 {
 System.out.println("From inside.");
 }
 }

 Other_Members_of_OuterClass
}

Write an invocation of the static method someMethod that you could use in some class you
define.

26. Consider the following class definition:

public class Outs
{
 private int outerInt = 100;

 public class Ins
 {
 private int innerInt = 25;

 public void specialMethod()
 {
 System.out.println(outerInt);
 System.out.println(innerInt);
 }
 }

 Other_Members_of_OuterClass
}

Write an invocation of the method specialMethod with an object of the class Ins. Part of
this exercise is to create the object of the class Ins. This should be code that you could use
in some class you define.

■ NESTING INNER CLASSES

It is legal to nest inner classes within inner classes. The rules are the same as what we
have already discussed except that names can get longer. For example, if A has a public
inner class B, and B has a public inner class C, then the following is valid code:

A aObject = new A();
A.B bObject =
 aObject.new B();
A.B.C cObject =
 bObject.new C();

5640_ch13.fm Page 665 Wednesday, February 11, 2004 2:42 PM

666 Chapter 13 Interfaces and Inner Classes

■ INNER CLASSES AND INHERITANCE

Suppose OuterClass has an inner class named InnerClass. If you derive DerivedClass
from OuterClass, then DerivedClass automatically has InnerClass as an inner class
just as if it were defined within DerivedClass.

Just as with any other kind of class in Java, you can make an inner class a derived
class of some other class. You can also make the outer class a derived class of a different
(or the same) base class.

It is not possible to override the definition of an inner class when you define a
derived class of the outer class.

It is also possible to use an inner class as a base class to derive classes, but we will not
go into those details in this book; there are some subtleties to worry about.

■ ANONYMOUS CLASSES

If you wish to create an object but have no need to name the object’s class, then you
can embed the class definition inside the expression with the new operator. These sorts
of class definitions are called anonymous classes because they have no class name. An
expression with an anonymous class definition is, like everything in Java, inside of
some class definition. Thus, an anonymous class is an inner class. Before we go into
the details of the syntax for anonymous classes, let’s say a little about where one might
use them.

The most straightforward way to create an object is the following:

YourClass anObject = new YourClass();

If new YourClass() is replaced by some expression that defines the class but does not
give the class any name, then there is no name YourClass to use to declare the variable
anObject. So, it does not make sense to use an anonymous class in this situation. How-
ever, it can make sense in the following situation:

SomeOtherType anObject = new YourClass();

Here SomeOtherType must be a type such that an object of the class YourClass is also
an object of SomeOtherType. In this situation you can replace new YourClass() with an
expression including an anonymous class instead of YourClass. The type SomeOther-
Type is usually a Java interface.

Here’s an example of an anonymous class. Suppose you define the following
interface:

public interface NumberCarrier
{
 public void setNumber(int value);
 public int getNumber();
}

anonymous class

5640_ch13.fm Page 666 Wednesday, February 11, 2004 2:42 PM

More about Inner Classes 667

Tip

Then the following creates an object using an anonymous class definition:

NumberCarrier anObject = new NumberCarrier()
 {
 private int number;
 public void setNumber(int value)
 {
 number = value;
 }
 public int getNumber()
 {
 return number;
 }
 };

The part in the braces is the same as the part inside the main braces of a class defini-
tion. The closing brace is followed by a semicolon, unlike a class definition. (This is
because the entire expression will be used as a Java statement.) The beginning part,
repeated below, may seem strange:

new NumberCarrier()

The new is sensible enough but what’s the point of NumberCarrier()? It looks like this
is an invocation of a constructor for NumberCarrier. But, NumberCarrier is an interface
and has no constructors. The meaning of new NumberCarrier() is simply

implements NumberCarrier

So what is being said is that the anonymous class implements the NumberCarrier inter-
face and is defined as shown between the main braces.

Display 13.11 shows a simple demonstration with two anonymous class definitions.
For completeness we have also repeated the definition of the NumberCarrier interface
in that display.

WHY USE INNER CLASSES?

Most simple situations do not need inner classes. However, there are situations for which inner
classes are a good solution. For example, suppose you want to have a class with two base classes.
That is not allowed in Java. However, you can have an outer class derived from one base class with
an inner class derived from the other base class. Since the inner and outer classes have access to
each other’s instance variables and methods, this can often serve as if it were a class with two
base classes.

As another example, if you only need one object of a class and the class definition is very short,
many programmers like to use an anonymous class (but I must admit I am not one of them).

5640_ch13.fm Page 667 Wednesday, February 11, 2004 2:42 PM

668 Chapter 13 Interfaces and Inner Classes

Display 13.11 Anonymous Classes (Part 1 of 2)

1 public class AnonymousClassDemo
2 {
3 public static void main(String[] args)
4 {
5 NumberCarrier anObject =
6 new NumberCarrier()
7 {
8 private int number;
9 public void setNumber(int value)

10 {
11 number = value;
12 }
13 public int getNumber()
14 {
15 return number;
16 }
17 };

18 NumberCarrier anotherObject =
19 new NumberCarrier()
20 {
21 private int number;
22 public void setNumber(int value)
23 {
24 number = 2*value;
25 }
26 public int getNumber()
27 {
28 return number;
29 }
30 };

31 anObject.setNumber(42);
32 anotherObject.setNumber(42);
33 showNumber(anObject);
34 showNumber(anotherObject);
35 System.out.println("End of program.");
36 }

37 public static void showNumber(NumberCarrier o)
38 {
39 System.out.println(o.getNumber());
40 }

41 }

This is just a toy example to demonstrate
the Java syntax for anonymous classes.

This is still the file
AnonymousClassDemo.java.

5640_ch13.fm Page 668 Wednesday, February 11, 2004 2:42 PM

codes668.html

Chapter Summary 669

Self-Test Exercises

When we study linked lists in Chapter 14, you will see cases where using an inner class as a helping
class makes the linked list class self-contained in a very natural way. We will also use inner classes
when defining Graphical User Interfaces (GUIs) in Chapters 16 and 18. But, until you learn what
linked lists and GUIs are, these are not likely to be compelling examples.

27. Suppose we replace

NumberCarrier anObject

with

Object anObject

in Display 13.11. What would be the first statement in the program to cause an error
message? Would it be a compiler error message or a run-time error message?

■ An interface is a property of a class that says what methods a class that implements
the interface must have.

■ An interface is defined the same way as a class is defined except that the keyword
interface is used in place of the keyword class and method bodies are replaced by
semicolons.

Chapter Summary

Display 13.11 Anonymous Classes (Part 2 of 2)

SAMPLE DIALOGUE

42
84
End of program.

1 public interface NumberCarrier
2 {
3 public void setNumber(int value);
4 public int getNumber();
5 }

This is the file
NumberCarrier.java.

5640_ch13.fm Page 669 Wednesday, February 11, 2004 2:42 PM

670 Chapter 13 Interfaces and Inner Classes

■ An interface may not have any instance variables, with one exception: An interface
may have defined constants. If you use the syntax for an instance variable in an inner
class, the variable is automatically a constant, not a real instance variable.

■ An inner class is a class defined within another class.

■ One simple use of an inner class is as a helping class to be used in the definition of
the outer class methods and/or instance variables.

■ A static inner class is one that is not associated with an object of the outer class. It
must include the modifier static in its class heading.

■ To create an object of a nonstatic inner class outside the definition of the outer class,
you must first create an object of the outer class and use it to create an object of the
inner class.

ANSWERS TO SELF-TEST EXERCISES

1. Yes to both. An interface is a type and can be used like any other type.

2. Yes. Any of the interface methods that it does not fully define must be made abstract
methods.

3. A derived class can have only one base class, but it can implement any number of interfaces.

4. No, but the way to accomplish the same thing is to have one interface extend the other.

These exercises are for the material on the Comparable interface.

5. Yes, the dialog would be the same. The change from the parameter type Comparable[] to
Object[] in the method interchange is in fact a good idea,

6. No. This will compile without any error messages. However, the less-than ordering does
not satisfy the semantics of the Comparable interface. For example, the trichotomy law
does not hold.

7. Yes. The three required conditions are true for objects of the class Circle:

(Irreflexive) By definition, no circle is inside itself.

(Trichotomy) For any two circles c1 and c2 with centers at the origin, one and only one of
the following holds true: c1 is inside of c2, c2 is inside of c1, or c1 equals c2.

(Transitivity) If c1 is inside of c2 and c2 is inside of c3, then c1 is inside of c3.

8. The class will produce a compiler error message saying that there is an inconsistency in the
definitions of ANSWER.

9. The class will compile and run with no error messages. Since the named constant ANSWER is
never used, there is no inconsistency.

10. The class will produce a compiler error message saying that you have not implemented the
heading for getStuff in InterfaceA.

11. They will all compile and the program will run. The two definitions of getStuff have dif-
ferent numbers of parameters and so this is overloading. There is no inconsistency.

5640_ch13.fm Page 670 Wednesday, February 11, 2004 2:42 PM

Answers to Self-Test Exercises 671

12. public class StockItem implements Cloneable
{
 private int number;
 private String name;
 public void setNumber(int newNumber)
 {
 number = newNumber;
 }
 ...
 public Object clone()
 {
 try
 {
 return super.clone();
 }
 catch(CloneNotSupportedException e)
 {//This should not happen.
 return null; //To keep compiler happy.
 }
 }
}

13. Note that you do not catch a CloneNotSupportedException because any such thrown
exception in super.clone is caught inside the base class method super.clone.

public class PricedItem extends StockItem
 implements Cloneable
{
 private double price;

 ...
 public Object clone()
 {
 return super.clone();
 }
}

14. public class Record implements Cloneable
{
 private StockItem item1;
 private StockItem item2;
 private String description;

 ...
 public Object clone()
 {
 try
 {
 Record copy =

5640_ch13.fm Page 671 Wednesday, February 11, 2004 2:42 PM

672 Chapter 13 Interfaces and Inner Classes

 (Record)super.clone();
 copy.item1 =
 (StockItem)item1.clone();
 copy.item2 =
 (StockItem)item2.clone();
 return copy;
 }
 catch(CloneNotSupportedException e)
 {//This should not happen.
 return null; //To keep compiler happy.
 }
 }
}

15. Note that you do not catch a CloneNotSupportedException because any such thrown
exception in super.clone is caught inside the base class method super.clone.

public class BigRecord extends Record
 implements Cloneable
{
 private StockItem item3;

 ...
 public Object clone()
 {
 BigRecord copy =
 (BigRecord)super.clone();
 copy.item3 =
 (StockItem)item3.clone();
 return copy;
 }
}

16. The heading of the class definition changes to what is shown in the following and the
method clone shown there is added. The version of Date for this chapter on the accompa-
nying CD includes this definition of clone.

public class Date implements Cloneable
{
 private String month;
 private int day;
 private int year;

 ...
 public Object clone()
 {
 try
 {
 return super.clone();//Invocation of

extra code on CD

5640_ch13.fm Page 672 Wednesday, February 11, 2004 2:42 PM

Answers to Self-Test Exercises 673

 //clone in the base class Object
 }
 catch(CloneNotSupportedException e)
 {//This should not happen.
 return null; //To keep compiler happy.
 }
 }
}

17. The heading of the class definition changes to what is shown in the following and the
method clone shown there is added. The version of Date for this chapter on the accompa-
nying CD includes this definition of clone.

public class Employee implements Cloneable
{
 private String name;
 private Date hireDate;

 ...
 public Object clone()
 {
 try
 {
 Employee copy =
 (Employee)super.clone();
 copy.hireDate =
 (Date)hireDate.clone();
 return copy;
 }
 catch(CloneNotSupportedException e)
 {//This should not happen.
 return null; //To keep compiler happy.
 }
 }
}

18. The heading of the class definition changes to what is shown in the following and the
method clone shown there is added. Note that you do not catch a CloneNotSupported-
Exception because any such thrown exception in super.clone is caught inside the base
class method super.clone. The version of HourlyEmployee for this chapter on the
accompanying CD includes this definition of clone.

public class HourlyEmployee extends Employee
 implements Cloneable
{
 private double wageRate ;
 private double hours;

extra code on CD

extra code on CD

5640_ch13.fm Page 673 Wednesday, February 11, 2004 2:42 PM

674 Chapter 13 Interfaces and Inner Classes

 ...
 public Object clone()
 {
 HourlyEmployee copy =
 (HourlyEmployee)super.clone();
 return copy;
 }
}

19. It would still be legal. An outer class has access to all the private members of an inner class.

20. Yes, they can be omitted, but the reason is that it indicates package access, and in a private
inner class, all privacy modifiers, including package access, are equivalent to public. (Note
that the situation for public inner classes will be different.)

21. Yes, it is legal to add the method doubleBalance to the inner class Money because an
inner class has access to the instance variables, like balance of the outer class. To test this
out, add the following as a method of the outer class:

public void test()
{
 balance.doubleBalance();
}

22. It would be legal. The method makeDeposit is assumed to be the method makeDeposit
of the outer class. The calling object balance is assumed to be the instance variable of the
outer class. These sorts of tricks can lead to confusing code. So, use them sparingly. This is
just an exercise.

23. No, a nonstatic inner class cannot have any static methods.

24. Yes, you can have a nonstatic method in a static inner class.

25. OuterClass.InnerClass.someMethod();

26. Outs outerObject = new Outs();
Outs.Ins innerObject =
 outerObject.new Ins();
innerObject.specialMethod();

27. You would get your first error on the following statement and it would be a complier error:

anObject.setNumber(42);

With the change described in the exercise, anObject is of type Object and Object has no
method named setNumber.

5640_ch13.fm Page 674 Wednesday, February 11, 2004 2:42 PM

Programming Projects 675

PROGRAMMING PROJECTS

1. In Display 13.5 we gave a sorting method to sort an array of type Comparable[]. In Dis-
play 12.6 we gave a sorting method that used the merge sort algorithm to sort an array of
type double[] into increasing order. Redo the method in Display 12.6 so it applies to an
array of type Comparable[]. Also, do a suitable test program.

2. In Display 13.5 we gave a sorting method to sort an array of type Comparable[]. In Dis-
play 12.8 we gave a sorting method that used the quick sort algorithm to sort an array of
type double[] into increasing order. Redo the method in Display 12.8 so it applies to an
array of type Comparable[]. Also, do a suitable test program.

3. Redo the class Person in Display 5.11 so that it implements the Cloneable interface. This
will require that you also redo the class Date so it implements the Cloneable interface.
Also, do a suitable test program.

4. Redo the class Person in Display 5.11 so that the class Date is a private inner class of the
class Person. Also, do a suitable test program. (You need not start from the version pro-
duced in Programming Project 3. You can ignore Programming Project 3 when you do this
project.)

5. This is a combination of Programming Projects 3 and 4. Redo the class Person in Display
5.11 so that the class Date is a private inner class of the class Person and so that the class
Person implements the Cloneable interface. Also, do a suitable test program.

6. Redo the class Employee and the class HourlyEmployee in Displays 7.2 and 7.3 so that
the class Date is an inner class of the class Employee and an inherited inner class of the
class HourlyEmployee. Also, do a suitable test program.

5640_ch13.fm Page 675 Wednesday, February 11, 2004 2:42 PM

project675a.html
project675b.html
project675c.html
project675d.html

	code links 1:
	code links 2:
	code links 4:
	code links 5:
	code links 6:
	code links 7:
	code links 8:
	code links 9:
	program project 13:
	1:
	2:
	6:
	3:

	code links 3a:
	code links 3b:

