

CHAPTER

11

Recursion

11.1 RECURSIVE

void METHODS 579

Example: Vertical Numbers 579

Tracing a Recursive Call 582

A Closer Look at Recursion 585

Pitfall: Infinite Recursion 586

Stacks for Recursion

✜ 588

Pitfall: Stack Overflow

✜ 589

Recursion versus Iteration 590

11.2 RECURSIVE METHODS THAT RETURN
A VALUE 591

General Form for a Recursive Method That
Returns a Value 591

Example: Another Powers Method 591

11.3 THINKING RECURSIVELY 596

Recursive Design Techniques 596

Binary Search

✜ 597

Efficiency of Binary Search

✜ 603

CHAPTER SUMMARY 605
ANSWERS TO SELF-TEST EXERCISES 605
PROGRAMMING PROJECTS 609

5640_ch11.fm Page 577 Wednesday, February 11, 2004 2:36 PM

11

Recursion

After a lecture on cosmology and the structure of the solar system, William
James was accosted by a little old lady.

“Your theory that the sun is the center of the solar system, and the earth is
a ball which rotates around it has a very convincing ring to it, Mr.
James, but it’s wrong. I’ve got a better theory,” said the little old lady.

“And what is that, madam?” inquired James politely.
“That we live on a crust of earth which is on the back of a giant turtle.”
Not wishing to demolish this absurd little theory by bringing to bear the

masses of scientific evidence he had at his command, James decided to
gently dissuade his opponent by making her see some of the inadequa-
cies of her position.

“If your theory is correct, madam,” he asked, “what does this turtle stand on?”
“You’re a very clever man, Mr. James, and that’s a very good question”

replied the little old lady, “but I have an answer to it. And it is this:
the first turtle stands on the back of a second, far larger, turtle, who
stands directly under him.”

“But what does this second turtle stand on?” persisted James patiently.
To this the little old lady crowed triumphantly. “It’s no use, Mr. James —

it’s turtles all the way down.”

J. R. Ross,

Constraints on Variables in Syntax

INTRODUCTION

A method definition that includes a call to itself is said to be recursive

. Like
most modern programming languages, Java allows methods to be recursive,
and if used with a little care, this can be a useful programming technique. In
this chapter we introduce the basic techniques needed for defining successful
recursive methods. There is nothing in this chapter that is truly unique to
Java. If you are already familiar with recursion you can safely skip this chapter.
No new Java elements are introduced in this chapter.

PREREQUISITES

Except for the last subsection on binary search, this chapter uses material only
from Chapters 1–5. The last subsection entitled “Binary Search” also uses the
basic material on one-dimensional arrays from Chapter 6.

You may postpone all or part of this chapter if you wish. Nothing in the
rest of this book requires any of this chapter.

recursive
method

5640_ch11.fm Page 578 Wednesday, February 11, 2004 2:36 PM

Recursive

void Methods 579

Example

Recursive

void

 Methods

 I remembered too that night which is at the middle of the
Thousand and One Nights when Scheherazade (through a
magical oversight of the copyist) begins to relate word for word
the story of the Thousand and One Nights, establishing the risk
of coming once again to the night when she must repeat it, and
thus to infinity.

Jorge Luis Borges,

The Garden of Forking Paths

When you are writing a method to solve a task, one basic design technique is to break
the task into subtasks. Sometimes it turns out that at least one of the subtasks is a
smaller example of the same task. For example, if the task is to search a list for a partic-
ular value, you might divide this into the subtask of searching the first half of the list
and the subtask of searching the second half of the list. The subtasks of searching the
halves of the list are “smaller” versions of the original task. Whenever one subtask is a
smaller version of the original task to be accomplished, you can solve the original task
by using a recursive method. We begin with a simple example to illustrate this tech-
nique. (For simplicity our examples are static methods; however, recursive methods
need not be static.)

VERTICAL NUMBERS

Display 11.1 contains a demonstration program for a recursive method named

writeVertical,
which takes one (nonnegative)

int argument and writes that

int to the screen with the digits
going down the screen one per line. For example, the invocation

writeVertical(1234);

would produce the output

1
2
3
4

RECURSION

In Java, a method definition may contain an invocation of the method being defined. In such
cases the method is said to be recursive.

11.1

5640_ch11.fm Page 579 Wednesday, February 11, 2004 2:36 PM

580 Chapter 11 Recursion

The task to be performed by

writeVertical may be broken down into the following two sub-
tasks:

SSSSiiiimmmmpppplllleeee CCCCaaaasssseeee::::

 If

n

<

10

, then write the number

n

 to the screen.

After all, if the number is only one digit long, the task is trivial.

Display 11.1 A Recursive void Method

1 public class RecursionDemo1
2 {
3 public static void main(String[] args)
4 {
5 System.out.println("writeVertical(3):");
6 writeVertical(3);

7 System.out.println("writeVertical(12):");
8 writeVertical(12);

9 System.out.println("writeVertical(123):");
10 writeVertical(123);
11 }

12 public static void writeVertical(int n)
13 {
14 if (n < 10)
15 {
16 System.out.println(n);
17 }
18 else //n is two or more digits long:
19 {
20 writeVertical(n/10);
21 System.out.println(n%10);
22 }
23 }
24 }

SAMPLE DIALOGUE

writeVertical(3):
3
writeVertical(12):
1
2
writeVertical(123):
1
2
3

5640_ch11.fm Page 580 Wednesday, February 11, 2004 2:36 PM

codes580.html

Recursive

void Methods 581

RRRReeeeccccuuuurrrrssssiiiivvvveeee CCCCaaaasssseeee::::

 If

n

>= 10

, then do two subtasks:

1. Output all the digits except the last digit.

2. Output the last digit.

For example, if the argument were

1234, the first part would output

1
2
3

and the second part would output

4. This decomposition of tasks into subtasks can be used to
derive the method definition.

Subtask 1 is a smaller version of the original task, so we can implement this subtask with a recur-
sive call. Subtask 2 is just the simple case we listed above. Thus, an outline of our algorithm for the
method

writeVertical with parameter

n is given by the following pseudocode:

if (n < 10)
{
 System.out.println(n);
}
else //n is two or more digits long:
{
 writeVertical(the number

n with the last digit removed

);
 System.out.println(the last digit of

n);
}

If you observe the following identities, it is easy to convert this pseudocode to a complete Java
method definition:

n/10 is the number

n with the last digit removed.

n%10 is the last digit of

n.

For example,

1234/10 evaluates to

123 and

1234%10 evaluates to

4.

The following is the complete code for the method:

public static void writeVertical(int n)
{
 if (n < 10)
 {
 System.out.println(n);
 }
 else //n is two or more digits long:
 {
 writeVertical(n/10);
 System.out.println(n%10);
 }
}

recursive subtask

5640_ch11.fm Page 581 Wednesday, February 11, 2004 2:36 PM

582 Chapter 11 Recursion

■ TRACING A RECURSIVE CALL

Let’s see exactly what happens when the following method call is made (as in Display 11.1):

writeVertical(123);

When this method call is executed, the computer proceeds just as it would with any
method call. The argument

123

 is substituted for the parameter

n

 and the body of the
method is executed. After the substitution of

123

 for

n

, the code to be executed is
equivalent to

Since

123

 is not less than

10

, the

else

 part is executed. However, the

else

 part begins
with the method call

writeVertical(n/10);

which (since

n

 is equal to

123

) is the call

writeVertical(123/10);

which is equivalent to

writeVertical(12);

When execution reaches this recursive call, the current method computation is placed
in suspended animation and this recursive call is executed. When this recursive call is
finished, the execution of the suspended computation will return to this point and the
suspended computation will continue from this point.

The recursive call

writeVertical(12);

is handled just like any other method call. The argument

12

 is substituted for the
parameter

n

 and the body of the method is executed. After substituting

12

 for

n

, there
are two computations, one suspended and one active, as follows:

if (123 < 10)
{
 System.out.println(123);
}
else //n is two or more digits long:
{
 writeVertical(123/10);
 System.out.println(123%10);
}

Computation will stop here until
the recursive call returns.

5640_ch11.fm Page 582 Wednesday, February 11, 2004 2:36 PM

Recursive

void Methods 583

Since

12

 is not less than

10

, the else part is executed. However, as you already saw,
the else part begins with a recursive call. The argument for the recursive call is n/10,
which in this case is equivalent to 12/10. So, this second computation of the method
writeVertical is suspended and the following recursive call is executed:

writeVertical(12/10);

which is equivalent to

writeVertical(1);

At this point, there are two suspended computations waiting to resume and the
computer begins to execute this new recursive call, which is handled just like all the
previous recursive calls. The argument 1 is substituted for the parameter n and the body
of the method is executed. At this point, the computation looks like the following:

if (123 < 10)
{
 System.out.println(123);
}
else //n is two or more digits long:
{
 writeVertical(123/10);
 System.out.println(123%10);
}

if (12 < 10)
{
 System.out.println(12);
}
else //n is two or more digits long:
{
 writeVertical(12/10);
 System.out.println(12%10);
}

Computation will stop here until
the recursive call returns.

if (123 < 10)
{
 System.out.println(123);
}
else //n is two or more digits long:
{
 writeVertical(123/10);
 System.out.println(123%10);
}

if (12 < 10)
{
 System.out.println(12);
}
else //n is two or more digits long:
{
 writeVertical(12/10);
 System.out.println(12%10);
}

if (1 < 10)
{
 System.out.println(1);
}
else //n is two or more digits long:
{
 writeVertical(1/10);
 System.out.println(1%10);
}

No recursive
call this time

5640_ch11.fm Page 583 Wednesday, February 11, 2004 2:36 PM

584 Chapter 11 Recursion

When the body of the method is executed this time, something different happens.
Since 1 is less than 10, the Boolean expression in the if-else statement is true, so the
statement before the else is executed. That statement is simply an output statement
that writes the argument 1 to the screen, so the call writeVertical(1) writes 1 to the
screen and ends without any recursive call.

When the call writeVertical(1) ends, the suspended computation that is waiting for
it to end resumes where that suspended computation left off, as shown by the following:

When this suspended computation resumes, it executes an output statement that out-
puts the value 12%10, which is 2. That ends that computation, but there is yet another
suspended computation waiting to resume. When this last suspended computation
resumes, the situation is

When this last suspended computation resumes, it outputs the value 123%10, which is
3, and the execution of the original method call ends. And, sure enough, the digits 1, 2,
and 3 have been written to the screen one per line, in that order.

output the digit 1

if (123 < 10)
{
 System.out.println(123);
}
else //n is two or more digits long:
{
 writeVertical(123/10);
 System.out.println(123%10);
}

if (12 < 10)
{
 System.out.println(12);
}
else //n is two or more digits long:
{
 writeVertical(12/10);
 System.out.println(12%10);
}

Computation resumes here.

output the digit 2

if (123 < 10)
{
 System.out.println(123);
}
else //n is two or more digits long:
{
 writeVertical(123/10);
 System.out.println(123%10);
}

Computation resumes here.

output the digit 3

5640_ch11.fm Page 584 Wednesday, February 11, 2004 2:36 PM

Recursive

void Methods 585

■ A CLOSER LOOK AT RECURSION

The definition of the method

writeVertical

 uses recursion. Yet, we did nothing new
or different in evaluating the method call

writeVertical(123)

. We treated it just like
any of the method calls we saw in previous chapters. We simply substituted the argu-
ment

123

 for the parameter

n

 and then executed the code in the body of the method
definition. When we reached the recursive call

writeVertical(123/10)

;

we simply repeated this process one more time.

 The computer keeps track of recursive calls in the following way. When a method is
called, the computer plugs in the arguments for the parameter(s) and begins to execute
the code. If it should encounter a recursive call, then it temporarily stops its computa-
tion, because it must know the result of the recursive call before it can proceed. It saves
all the information it needs to continue the computation later on, and proceeds to eval-
uate the recursive call. When the recursive call is completed, the computer returns to
finish the outer computation.

The Java language places no restrictions on how recursive calls are used in method
definitions. However, in order for a recursive method definition to be useful, it must be
designed so that any call of the method must ultimately terminate with some piece of
code that does not depend on recursion. The method may call itself, and that recursive
call may call the method again. The process may be repeated any number of times.
However, the process will not terminate unless eventually one of the recursive calls does
not depend on further recursion. The general outline of a successful recursive method
definition is as follows:

■

One or more cases in which the method accomplishes its task by using recursive
call(s) to accomplish one or more smaller versions of the task.

■

One or more cases in which the method accomplishes its task without the use of any
recursive calls. These cases without any recursive calls are called base cases

 or stop-
ping cases

.

Often an

if-else

 statement determines which of the cases will be executed. A typi-
cal scenario is for the original method call to execute a case that includes a recursive
call. That recursive call may in turn execute a case that requires another recursive call.
For some number of times, each recursive call produces another recursive call, but
eventually one of the stopping cases should apply.

Every call of the method must eventu-
ally lead to a stopping case, or else the method call will never end because of an infinite chain
of recursive calls.

 (In practice, a call that includes an infinite chain of recursive calls will
usually terminate abnormally rather than actually running forever.)

The most common way to ensure that a stopping case is eventually reached is to
write the method so that some (positive) numeric quantity is decreased on each recur-
sive call and to provide a stopping case for some “small” value. This is how we designed
the method

writeVertical

 in Display 11.1 When the method

writeVertical

 is
called, that call produces a recursive call with a smaller argument. This continues with

how recursion
works

how recursion
ends

base case
stopping case

5640_ch11.fm Page 585 Tuesday, February 17, 2004 5:34 PM

586 Chapter 11 Recursion

Pitfall

each recursive call producing another recursive call until the argument is less than 10.
When the argument is less than 10, the method call ends without producing any more
recursive calls and the process works its way back to the original call and the process ends.

INFINITE RECURSION

In the example of the method writeVertical discussed in the previous subsections, the series
of recursive calls eventually reached a call of the method that did not involve recursion (that is, a
stopping case was reached). If, on the other hand, every recursive call produces another recursive
call, then a call to the method will, in theory, run forever. This is called infinite recursion. In prac-
tice, such a method will typically run until the computer runs out of resources and the program
terminates abnormally.

 Examples of infinite recursion are not hard to come by. The following is a syntactically correct
Java method definition, which might result from an attempt to define an alternative version of the
method writeVertical:

public static void newWriteVertical(int n)
{
 newWriteVertical(n/10);
 System.out.println(n%10);
}

If you embed this definition in a program that calls this method, the program will compile with no
error messages and you can run the program. Moreover, the definition even has a certain reason-
ableness to it. It says that to output the argument to newWriteVertical, first output all but the
last digit and then output the last digit. However, when called, this method will produce an infi-
nite sequence of recursive calls. If you call newWriteVertical(12), that execution will stop
to execute the recursive call newWriteVertical(12/10), which is equivalent to new-
WriteVertical(1). The execution of that recursive call will, in turn, stop to execute the recur-
sive call

newWriteVertical(1/10);

GENERAL FORM OF A RECURSIVE METHOD DEFINITION

The general outline of a successful recursive method definition is as follows:

■ One or more cases that include one or more recursive calls to the method being defined. These
recursive calls should solve “smaller” versions of the task performed by the method being
defined.

■ One or more cases that include no recursive calls. These cases without any recursive calls are
called base cases or stopping cases.

5640_ch11.fm Page 586 Wednesday, February 11, 2004 2:36 PM

Recursive void Methods 587

Self-Test Exercises

which is equivalent to

newWriteVertical(0);

That, in turn, will stop to execute the recursive call newWriteVertical(0/10); which is also
equivalent to

newWriteVertical(0);

and that will produce another recursive call to again execute the same recursive method call new-
WriteVertical(0); and so on, forever. Since the definition of newWriteVertical has no
stopping case, the process will proceed forever (or until the computer runs out of resources).

1. What is the output of the following program?

public class Exercise1
{
 public static void main(String[] args)
 {
 cheers(3);
 }

 public static void cheers(int n)
 {
 if (n == 1)
 {

 System.out.println("Hurray");
 }

 else
 {
 System.out.println("Hip ");
 cheers(n − 1);
 }
 }
}

2. Write a recursive void method that has one parameter which is a integer and that writes to
the screen the number of asterisks '*' given by the argument. The output should be all on
one line. You can assume the argument is positive.

3. Write a recursive void method that has one parameter, which is a positive integer. When
called, the method writes its argument to the screen backward. That is, if the argument is
1234, it outputs the following to the screen:

4321

5640_ch11.fm Page 587 Wednesday, February 11, 2004 2:36 PM

588 Chapter 11 Recursion

4. Write a recursive

void

 method that takes a single (positive)

int

 argument

n

 and writes the
integers

1

,

2

, . . . ,

n

 to the screen.

5. Write a recursive

void

 method that takes a single (positive)

int

 argument

n

 and writes
integers

n

,

n-1

, . . . ,

3

,

2

,

1

 to the screen. Hint: Notice that you can get from the code for
exercise 4 to that for this exercise (or vice versa) by an exchange of as little as two lines.

■ STACKS FOR RECURSION

✜

To keep track of recursion, and a number of other things, most computer systems use a
structure called a

stack.

 A stack

 is a very specialized kind of memory structure that is
analogous to a stack of paper. In this analogy, there is an inexhaustible supply of extra
blank sheets of paper. To place some information in the stack, it is written on one of
these sheets of paper and placed on top of the stack of papers. To place more informa-
tion in the stack, a clean sheet of paper is taken, the information is written on it, and
this new sheet of paper is placed on top of the stack. In this straightforward way, more
and more information may be placed on the stack.

 Getting information out of the stack is also accomplished by a very simple proce-
dure. The top sheet of paper can be read, and when it is no longer needed, it is thrown
away. There is one complication: Only the top sheet of paper is accessible. In order to
read, say, the third sheet from the top, the top two sheets must be thrown away. Since
the last sheet that is put on the stack is the first sheet taken off the stack, a stack is often
called a last-in/first-out

 memory structure, abbreviated LIFO

.

 Using a stack, the computer can easily keep track of recursion. Whenever a method
is called, a new sheet of paper is taken. The method definition is copied onto this sheet
of paper, and the arguments are plugged for the function parameters. Then the com-
puter starts to execute the body of the function definition. When it encounters a recur-
sive call, it stops the computation it is doing on that sheet in order to compute the value
returned by the recursive call. But, before computing the recursive call, it saves enough
information so that, when it does finally determine the value returned by the recursive
call, it can continue the stopped computation. This saved information is written on a
sheet of paper and placed on the stack. A new sheet of paper is used for the recursive
call. The computer writes a second copy of the method definition on this new sheet of
paper, plugs in the arguments for the method parameters, and starts to execute the
recursive call. When it gets to a recursive call within the recursively called copy, it
repeats the process of saving information on the stack and using a new sheet of paper
for the new recursive call. This process is illustrated in the subsection entitled “Tracing a
Recursive Call.” Even though we did not call it a stack at the time, the illustrations of
computations placed one on top of the other illustrate the actions of the stack.

 This process continues until some recursive call to the method completes its com-
putation without producing any more recursive calls. When that happens, the com-
puter turns its attention to the top sheet of paper on the stack. This sheet contains the

stack

last-in/first-out

recursion

5640_ch11.fm Page 588 Tuesday, February 17, 2004 5:17 PM

Recursive void Methods 589

Pitfall

partially completed computation that is waiting for the recursive computation that just
ended. So, it is possible to proceed with that suspended computation. When that sus-
pended computation ends, the computer discards that sheet of paper and the sus-
pended computation that is below it on the stack becomes the computation on top of
the stack. The computer turns its attention to the suspended computation that is now
on the top of the stack, and so forth. The process continues until the computation on
the bottom sheet is completed. Depending on how many recursive calls are made and
how the function definition is written, the stack may grow and shrink in any fashion.
Notice that the sheets in the stack can only be accessed in a last-in/first-out fashion, but
that is exactly what is needed to keep track of recursive calls. Each suspended version is
waiting for the completion of the version directly above it on the stack.

Of course, computers do not have stacks of paper. This is just an analogy. The com-
puter uses portions of memory rather than pieces of paper. The contents of one of these
portions of memory (“sheets of paper”) is called a stack frame or activation record.
These stack frames are handled in the last-in/first-out manner we just discussed. (These
stack frames do not contain a complete copy of the function definition, but merely ref-
erence a single copy of the function definition. However, a stack frame contains enough
information to allow the computer to act as if the stack frame contains a complete copy
of the function definition.)

STACK OVERFLOW ✜

There is always some limit to the size of the stack. If there is a long chain in which a method makes
a recursive call to itself, and that call results in another recursive call, and that call produces yet
another recursive call, and so forth, then each recursive call in this chain will cause another sus-
pended computation to be placed on the stack. If this chain is too long, then the stack will
attempt to grow beyond its limit. This is an error condition known as a stack overflow. If you
receive an error message that says stack overflow, it is likely that some method call has produced
an excessively long chain of recursive calls. One common cause of stack overflow is infinite recur-
sion. If a method is recursing infinitely, then it will eventually try to make the stack exceed any
stack size limit.

STACK ✜

A stack is a last-in/first-out memory structure. The first item referenced or removed from a stack
is always the last item entered into the stack. Stacks are used by computers to keep track of recur-
sion (and for other purposes).

stack frame

5640_ch11.fm Page 589 Wednesday, February 11, 2004 2:36 PM

590 Chapter 11 Recursion

■ RECURSION VERSUS ITERATION

Recursion is not absolutely necessary. In fact, some programming languages do not
allow it. Any task that can be accomplished using recursion can also be done in some
other way without using recursion. For example, Display 11.2 contains a nonrecursive
version of the method given in Display 11.1. The nonrecursive version of a method
typically uses a loop (or loops) of some sort in place of recursion. For that reason, the
nonrecursive version is usually referred to as an iterative version. If the definition of the
method writeVertical given in Display 11.1 is replaced by the version given in Dis-
play 11.2, then the output will be the same. As is true in this case, a recursive version of
a method can sometimes be much simpler than an iterative version. The full program
with the iterative version of the method is given in the file IterativeDemo1 on the
accompanying CD.

A recursively written method will usually run slower and use more storage than an
equivalent iterative version. The computer must do extra work manipulating the stack
to keep track of the recursion. However, since the system does all this for you automat-
ically, using recursion can sometimes make your job as a programmer easier, and can
sometimes produce code that is easier to understand.

iterative version

extra code on CD

efficiency

Display 11.2 Iterative Version of the Method in Display 11.1

1 public static void writeVertical(int n)
2 {
3 int nsTens = 1;
4 int leftEndPiece = n;
5 while (leftEndPiece > 9)
6 {
7 leftEndPiece = leftEndPiece/10;
8 nsTens = nsTens*10;
9 }

10 //nsTens is a power of ten that has the same number
11 //of digits as n. For example, if n is 2345, then
12 //nsTens is 1000.

13 for (int powerOf10 = nsTens;
14 powerOf10 > 0; powerOf10 = powerOf10/10)
15 {
16 System.out.println(n/powerOf10);
17 n = n%powerOf10;
18 }
19 }

5640_ch11.fm Page 590 Wednesday, February 11, 2004 2:36 PM

Recursive Methods that Return a Value 591

Example

Self-Test Exercises

6. If your program produces an error message that says stack overflow, what is a likely source
of the error?

7. Write an iterative version of the method cheers defined in Self-Test Exercise 1.

8. Write an iterative version of the method defined in Self-Test Exercise 2.

9. Write an iterative version of the method defined in Self-Test Exercise 3.

10. Trace the recursive solution you made to Self-Test Exercise 4.

11. Trace the recursive solution you made to Self-Test Exercise 5.

Recursive Methods that Return a Value
 To iterate is human, to recurse divine.

Anonymous

■ GENERAL FORM FOR A RECURSIVE METHOD THAT RETURNS A VALUE

The recursive methods you have seen thus far are all void methods, but recursion is not
limited to void methods. A recursive method can return a value of any type. The tech-
nique for designing recursive methods that return a value is basically the same as what
you learned for void methods. An outline for a successful recursive method definition
that returns a value is as follows:

■ One or more cases in which the value returned is computed in terms of calls to the
same method (that is, using recursive calls). As was the case with void methods, the
arguments for the recursive calls should intuitively be “smaller.”

■ One or more cases in which the value returned is computed without the use of any
recursive calls. These cases without any recursive calls are called base cases or stop-
ping cases (just as they were with void methods).

This technique is illustrated in the next Programming Example.

ANOTHER POWERS METHOD

In Chapter 5 we introduced the static method pow of the class Math. This method pow computes
powers. For example, Math.pow(2.0,3.0) returns 2.03.0, so the following sets the variable
result equal to 8.0:

double result = Math.pow(2.0, 3.0);

11.2

5640_ch11.fm Page 591 Wednesday, February 11, 2004 2:36 PM

592 Chapter 11 Recursion

The method pow takes two arguments of type double and returns a value of type double. Dis-
play 11.3 contains a recursive definition for a static method that is similar but that works with the
type int rather than double. This new method is called power. For example, the following will
set the value of result2 equal to 8, since 23 is 8:

int result2 = power(2, 3);

Outside the defining class, this would be written

int result2 = RecursionDemo2.power(2, 3);

Display 11.3 The Recursive Method power

1 public class RecursionDemo2
2 {
3 public static void main(String[] args)
4 {
5 for (int n = 0; n < 4; n++)
6 System.out.println("3 to the power " + n
7 + " is " + power(3, n));
8 }

9 public static int power(int x, int n)
10 {
11 if (n < 0)
12 {
13 System.out.println("Illegal argument to power.");
14 System.exit(0);
15 }

16 if (n > 0)
17 return (power(x, n − 1)*x);
18 else // n == 0
19 return (1);
20 }
21 }

SAMPLE DIALOGUE

3 to the power 0 is 1
3 to the power 1 is 3
3 to the power 2 is 9
3 to the power 3 is 27

5640_ch11.fm Page 592 Wednesday, February 11, 2004 2:36 PM

codes592.html

Recursive Methods that Return a Value 593

Our main reason for defining the method power is to have a simple example of a recursive
method, but there are situations in which the method power would be preferable to the method
pow. The method pow returns a value of type double, which is only an approximate quantity.
The method power returns a value of type int, which is an exact quantity. In some situations,
you might need the additional accuracy provided by the method power.

The definition of the method power is based on the following formula:

xn is equal to xn−1 * x

Translating this formula into Java says that the value returned by power(x, n) should be the
same as the value of the expression

power(x, n − 1)*x

The definition of the method power given in Display 11.3 does return this value for power(x, n),
provided n > 0.

The case where n is equal to 0 is the stopping case. If n is 0, then power(x, n) simply returns 1
(since x0 is 1).

Let’s see what happens when the method power is called with some sample values. First consider
the simple expression:

 power(2, 0)

When the method is called, the value of x is set equal to 2, the value of n is set equal to 0, and the
code in the body of the method definition is executed. Since the value of n is a legal value, the
if-else statement is executed. Since this value of n is not greater than 0, the return statement
after the else is used, so the method call returns 1. Thus, the following would set the value of
result3 equal to 1:

 int result3 = power(2, 0);

Now let’s look at an example that involves a recursive call. Consider the expression

 power(2, 1)

When the method is called, the value of x is set equal to 2, the value of n is set equal to 1, and the
code in the body of the method definition is executed. Since this value of n is greater than 0, the
following return statement is used to determine the value returned:

return (power(x, n − 1)*x);

which in this case is equivalent to

return (power(2, 0)*2);

At this point, the computation of power(2, 1) is suspended, a copy of this suspended computa-
tion is placed on the stack, and the computer then starts a new method call to compute the value

5640_ch11.fm Page 593 Wednesday, February 11, 2004 2:36 PM

594 Chapter 11 Recursion

Self-Test Exercises

of power(2, 0). As you have already seen, the value of power(2, 0) is 1. After determining the
value of power(2, 0), the computer replaces the expression power(2, 0) with its value of 1 and
resumes the suspended computation. The resumed computation determines the final value for
power(2, 1) from the above return statement as

power(2, 0)*2 is 1*2 which is 2

so the final value returned for power(2, 1) is 2. So, the following would set the value of
result4 equal to 2:

 int result4 = power(2, 1);

Larger numbers for the second argument will produce longer chains of recursive calls. For exam-
ple, consider the statement

System.out.println(power(2, 3));

The value of power(2, 3) is calculated as follows:

power(2, 3) is power(2, 2)*2
power(2, 2) is power(2, 1)*2
power(2, 1) is power(2, 0)*2

power(2, 0) is 1 (stopping case)

When the computer reaches the stopping case, power(2, 0), there are three suspended compu-
tations. After calculating the value returned for the stopping case, it resumes the most recently
suspended computations to determine the value of power(2, 1). After that, the computer com-
pletes each of the other suspended computations, using each value computed as a value to plug
into another suspended computation, until it reaches and completes the computation for the
original call power(2, 3). The details of the entire computation are illustrated in Display 11.4.

12. What is the output of the following program?

public class Exercise12
{
 public static void main(String[] args)
 {
 System.out.println(mystery(3));
 }

 public static int mystery(int n)
 {
 if (n <= 1)
 return 1;

5640_ch11.fm Page 594 Wednesday, February 11, 2004 2:36 PM

Recursive Methods that Return a Value 595

 else
 return (mystery(n − 1) + n);
 }
}

13. What is the output of the following program? What well-known mathematical method is
rose?

public class Exercise13
{
 public static void main(String[] args)
 {
 System.out.println(rose(4));

 }

 public static int rose(int n)
 {
 if (n <= 0)

Display 11.4 Evaluating the Recursive Method Call power(2,3)

SEQUENCE OF RECURSIVE CALLS:
1

power(2, 0) *2

 power(2, 1) *2

 power(2, 2) *2

 power(2, 3)

Start Here

HOW THE FINAL VALUE IS COMPUTED:
1

 1 *2

 1*2 is 2

 2 *2

 2*2 is 4

 4 *2

 4*2 is 8

 8

power(2, 3) is 8

5640_ch11.fm Page 595 Wednesday, February 11, 2004 2:36 PM

596 Chapter 11 Recursion

 return 1;
 else
 return (rose(n − 1) * n);
 }
}

14. Redefine the method power (Display 11.3) so that it also works for negative exponents. To
do this, you also have to change the type of the value returned to double. The method
heading for the redefined version of power is as follows:

/**
 Precondition: If n < 0, then x is not 0.
 Returns x to the power n.
*/
public static double power(int x, int n)

Hint: x −n is equal to 1/(x n).

Thinking Recursively
There are two kinds of people in the world, those who divide the
world into two kinds of people and those who do not.

Anonymous

■ RECURSIVE DESIGN TECHNIQUES

When defining and using recursive methods, you do not want to be continually aware
of the stack and the suspended computations. The power of recursion comes from the
fact that you can ignore that detail and let the computer do the bookkeeping for you.
Consider the example of the method power in Display 11.3. The way to think of the
definition of power is as follows:

power(x, n) returns power(x, n − 1)*x

Since xn is equal to xn-1*x, this is the correct value to return, provided that the compu-
tation will always reach a stopping case and will correctly compute the stopping case.
So, after checking that the recursive part of the definition is correct, all you need to
check is that the chain of recursive calls will always reach a stopping case and that the
stopping case will always return the correct value. In other words, all that you need to
do is check that the following three properties are satisfied:

1. There is no infinite recursion. (A recursive call may lead to another recursive call,
and that may lead to another, and so forth, but every such chain of recursive calls
eventually reaches a stopping case.)

2. Each stopping case returns the correct value for that case.

11.3

criteria for
methods that
return a value

5640_ch11.fm Page 596 Wednesday, February 11, 2004 2:36 PM

Thinking Recursively 597

3. For the cases that involve recursion: if all recursive calls return the correct value, then
the final value returned by the method is the correct value.

For example, consider the method power in Display 11.3:

1. There is no infinite recursion: The second argument to power(x, n) is decreased
by one in each recursive call, so any chain of recursive calls must eventually reach the
case power(x, 0), which is the stopping case. Thus, there is no infinite recursion.

2. Each stopping case returns the correct value for that case: The only stopping case
is power(x, 0). A call of the form power(x, 0) always returns 1, and the correct
value for x0 is 1. So the stopping case returns the correct value.

3. For the cases that involve recursion: if all recursive calls return the correct
value, then the final value returned by the method is the correct value: The only
case that involves recursion is when n > 1. When n > 1, power(x, n) returns

power(x, n − 1)*x.

To see that this is the correct value to return, note that: if power(x, n − 1) returns
the correct value, then power(x, n − 1) returns xn−1 and so power(x, n) returns

xn−1 * x, which is xn

and that is the correct value for power(x, n).

That’s all you need to check to be sure that the definition of power is correct. (The
above technique is known as mathematical induction, a concept that you may have
heard about in a mathematics class. However, you do not need to be familiar with the
term mathematical induction to use this technique.)

We gave you three criteria to use in checking the correctness of a recursive method
that returns a value. Basically the same rules can be applied to a recursive void method.
If you show that your recursive void method definition satisfies the following three cri-
teria, then you will know that your void method performs correctly:

1. There is no infinite recursion.

2. Each stopping case performs the correct action for that case.

3. For each of the cases that involve recursion: if all recursive calls perform their actions
correctly, then the entire case performs correctly.

■ BINARY SEARCH ✜

In this subsection we will develop a recursive method that searches an array to find out
whether it contains a specified value. For example, the array may contain a list of the
numbers for credit cards that are no longer valid. A store clerk needs to search the list to
see if a customer’s card is valid or invalid.

The indices of the array a are the integers 0 through finalIndex. To make the task
of searching the array easier, we will assume that the array is sorted. Hence, we know
the following:

 a[0] ≤ a[1] ≤ a[2] ≤... ≤ a[finalIndex]

In fact, the binary search algorithm we will use requires that the array be sorted like this.

criteria for
void methods

5640_ch11.fm Page 597 Wednesday, February 11, 2004 2:36 PM

598 Chapter 11 Recursion

When searching an array, you are likely to want to know both whether the value is
in the array and, if it is, where it is in the array. For example, if you are searching for a
credit card number, then the array index may serve as a record number. Another array
indexed by these same indices may hold a phone number or other information to use
for reporting the suspicious card. Hence, if the sought-after value is in the array, we will
have our method return an index of where the sought-after value is located. If the value
is not in the array, our method will return −1. (The array may contain repeats, which is
why we say “an index” and not “the index.”)

Now let us proceed to produce an algorithm to solve this task. It will help to visual-
ize the problem in very concrete terms. Suppose the list of numbers is so long that it
takes a book to list them all. This is in fact how invalid credit card numbers are distrib-
uted to stores that do not have access to computers. If you are a clerk and are handed a
credit card, you must check to see if it is on the list and hence invalid. How would you
proceed? Open the book to the middle and see if the number is there. If it is not and it
is smaller than the middle number, then work backward toward the beginning of the
book. If the number is larger than the middle number, you work your way toward the
end of the book. This idea produces our first draft of an algorithm:

mid = approximate midpoint between 0 and finalIndex;
if (key == a[mid])
 return mid;
else if (key < a[mid])
 search a[0] through a[mid − 1];
else if (key > a[mid])
 search a[mid + 1] through a[finalIndex];

 Since the searchings of the shorter lists are smaller versions of the very task we are
designing the algorithm to perform, this algorithm naturally lends itself to the use of
recursion. The smaller lists can be searched with recursive calls to the algorithm itself.

 Our pseudocode is a bit too imprecise to be easily translated into Java code. The
problem has to do with the recursive calls. There are two recursive calls shown:

search a[0] through a[mid − 1];
 and
search a[mid + 1] through a[finalIndex];

To implement these recursive calls, we need two more parameters. A recursive call
specifies that a subrange of the array is to be searched. In one case it is the elements
indexed by 0 through mid − 1. In the other case it is the elements indexed by mid + 1
through finalIndex. The two extra parameters will specify the first and last indices of
the search, so we will call them first and last. Using these parameters for the lowest
and highest indices, instead of 0 and finalIndex, we can express the pseudocode more
precisely as follows:

To search a[first] through a[last] do the following:
mid = approximate midpoint between first and last;
if (key == a[mid])

algorithm
first version

more parameters

algorithm
first refinement

5640_ch11.fm Page 598 Wednesday, February 11, 2004 2:36 PM

Thinking Recursively 599

 return mid;
else if (key < a[mid])
 return the result of searching a[first] through a[mid − 1];
else if (key > a[mid])
 return the result of searching a[mid + 1] through a[last];

To search the entire array, the algorithm would be executed with first set equal to 0
and last set equal to finalIndex. The recursive calls will use other values for first
and last. For example, the first recursive call would set first equal to 0 and last
equal to the calculated value mid − 1.

 As with any recursive algorithm, we must ensure that our algorithm ends rather
than producing infinite recursion. If the sought-after number is found on the list, then
there is no recursive call and the process terminates, but we need some way to detect
when the number is not on the list. On each recursive call, the value of first is
increased or the value of last is decreased. If they ever pass each other and first actu-
ally becomes larger than last, then we will know that there are no more indices left to
check and that the number key is not in the array. If we add this test to our
pseudocode, we obtain a complete solution, as shown in Display 11.5.

Now we can routinely translate the pseudocode into Java code. The result is shown
in Display 11.6. The method search is an implementation of the recursive algorithm
given in Display 11.5. A diagram of how the method performs on a sample array is
given in Display 11.7. Display 11.8 illustrates how the method search is used.

stopping case

algorithm
final version

Display 11.5 Pseudocode for Binary Search ✜

ALGORITHM TO SEARCH a[first] THROUGH a[last]

/**
 Precondition:
 a[first]<= a[first + 1] <= a[first + 2] <=... <= a[last]
*/

TO LOCATE THE VALUE KEY:

if (first > last) //A stopping case
 return −1;
else
{
 mid = approximate midpoint between first and last;
 if (key == a[mid]) //A stopping case
 return mid;
 else if key < a[mid] //A case with recursion
 return the result of searching a[first] through a[mid − 1];
 else if key > a[mid] //A case with recursion
 return the result of searching a[mid + 1] through a[last];
 }

5640_ch11.fm Page 599 Wednesday, February 11, 2004 2:36 PM

600 Chapter 11 Recursion

 Notice that the method search solves a more general problem than the original task.
Our goal was to design a method to search an entire array. Yet the method will let us
search any interval of the array by specifying the indices first and last. This is com-
mon when designing recursive methods. Frequently, it is necessary to solve a more gen-
eral problem in order to be able to express the recursive algorithm. In this case, we only
wanted the answer in the case where first and last are set equal to 0 and finalIndex.
However, the recursive calls will set them to values other than 0 and finalIndex.

In the subsection entitled “Tracing a Recursive Call,” we gave three criteria that you
should check to ensure that a recursive void method definition is correct. Let’s check
these three things for the method search given in Display 11.6:

1. There is no infinite recursion: On each recursive call the value of first is
increased or the value of last is decreased. If the chain of recursive calls does not
end in some other way, then eventually the method will be called with first larger
than last, and that is a stopping case.

Display 11.6 Recursive Method for Binary Search ✜

1 public class BinarySearch
2 {
3 /**
4 Searches the array a for key. If key is not in the array segment, then −1 is
5 returned. Otherwise returns an index in the segment such that key == a[index].
6 Precondition: a[first] <= a[first + 1]<= ... <= a[last]
7 */
8 public static int search(int[] a, int first, int last, int key)
9 {

10 int result = 0; //to keep the compiler happy.

11 if (first > last)
12 result = −1;
13 else
14 {
15 int mid = (first + last)/2;

16 if (key == a[mid])
17 result = mid;
18 else if (key < a[mid])
19 result = search(a, first, mid − 1, key);
20 else if (key > a[mid])
21 result = search(a, mid + 1, last, key);
22 }
23 return result;
24 }
25 }

5640_ch11.fm Page 600 Wednesday, February 11, 2004 2:36 PM

codes600.html

Thinking Recursively 601

2. Each stopping case performs the correct action for that case: There are two stop-
ping cases, when first > last and when key == a[mid]. Let’s consider each case.

If first > last, there are no array elements between a[first] and a[last] and so
key is not in this segment of the array. (Nothing is in this segment of the array!) So,

Display 11.7 Execution of the Method search ✜

key is 63

a[0] 15

a[1] 20

a[2] 35

a[3] 41

a[4] 57

a[5] 63

a[6] 75

a[7] 80

a[8] 85

a[9] 90

a[0] 15

a[1] 20

a[2] 35

a[3] 41

a[4] 57

a[5] 63

a[6] 75

a[7] 80

a[8] 85

a[9] 90

a[0] 15

a[1] 20

a[2] 35

a[3] 41

a[4] 57

a[5] 63

a[6] 75

a[7] 80

a[8] 85

a[9] 90

 first == 0

mid = (0 + 9)/2

last == 9

mid = (5 + 9)/2

first == 5

last == 9

last == 6

mid = (5 + 6)/2 which is 5
a[mid] is a[5] == 63
key was found.
return 5.

first == 5

next

next

Not in
this half

Not here

5640_ch11.fm Page 601 Wednesday, February 11, 2004 2:36 PM

602 Chapter 11 Recursion

if first > last, the method search correctly returns −1, indicating that key is not in
the specified range of the array.

If key == a[mid], the algorithm correctly sets location equal to mid. Thus, both
stopping cases are correct.

Display 11.8 Using the search Method ✜

1 public class BinarySearchDemo
2 {
3 public static void main(String[] args)
4 {
5 int[] a = {−2, 0, 2, 4, 6, 8, 10, 12, 14, 16};
6 int finalIndex = 9;

7 System.out.println("Array contains:");
8 for (int i = 0; i < a.length; i++)
9 System.out.print(a[i] + " ");

10 System.out.println();
11 System.out.println();

12 int result;
13 for (int key = −3; key < 5; key++)
14 {
15 result = BinarySearch.search(a, 0, finalIndex, key);
16 if (result >= 0)
17 System.out.println(key + " is at index " + result);
18 else
19 System.out.println(key + " is not in the array.");
20 }
21 }
22 }

SAMPLE DIALOGUE

Array contains:
−2 0 2 4 6 8 10 12 14 16

−3 is not in the array.
−2 is at index 0
−1 is not in the array.
0 is at index 1
1 is not in the array.
2 is at index 2
3 is not in the array.
4 is at index 3

5640_ch11.fm Page 602 Wednesday, February 11, 2004 2:36 PM

codes602.html

Thinking Recursively 603

3. For each of the cases that involve recursion, if all recursive calls perform their
actions correctly, then the entire case performs correctly: There are two cases in
which there are recursive calls, when key < a[mid] and when key > a[mid]. We need
to check each of these two cases.

First suppose key < a[mid]. In this case, since the array is sorted, we know that if key
is anywhere in the array, then key is one of the elements a[first] through a[mid −
1]. Thus, the method need only search these elements, which is exactly what the
recursive call

search(a, first, mid − 1, key)

does. So if the recursive call is correct, then the entire action is correct.

Next, suppose key > a[mid]. In this case, since the array is sorted, we know that if
key is anywhere in the array, then key is one of the elements a[mid + 1] through
a[last]. Thus, the method need only search these elements, which is exactly what
the recursive call

search(a, mid + 1, last, key)

does. So if the recursive call is correct, then the entire action is correct. Thus, in both
cases the method performs the correct action (assuming that the recursive calls per-
form the correct action).

The method search passes all three of our tests, so it is a good recursive method definition.

■ EFFICIENCY OF BINARY SEARCH ✜

The binary search algorithm is extremely fast compared to an algorithm that simply
tries all array elements in order. In the binary search, you eliminate about half the array
from consideration right at the start. You then eliminate a quarter, then an eighth of
the array, and so forth. These savings add up to a dramatically fast algorithm. For an
array of 100 elements, the binary search will never need to compare more than seven
array elements to the key. A serial search could compare as many as 100 array elements
to the key and on the average will compare about 50 array elements to the key. More-
over, the larger the array is, the more dramatic the savings will be. On an array with
1,000 elements, the binary search will only need to compare about 10 array elements to
the key value, as compared to an average of 500 for the serial search algorithm.1

An iterative version of the method search is given in Display 11.9. On some sys-
tems the iterative version will run more efficiently than the recursive version. The algo-
rithm for the iterative version was derived by mirroring the recursive version. In the
iterative version, the local variables first and last mirror the roles of the parameters
in the recursive version, which are also named first and last. As this example illus-
trates, it often makes sense to derive a recursive algorithm even if you expect to later

1 The binary search algorithm has worst-case running time that is logarithmic, that is O(log n).
The serial search algorithm is linear, that is O(n). If the terms used in this footnote are not famil-
iar to you, you can safely ignore this footnote.

iterative version

5640_ch11.fm Page 603 Wednesday, February 11, 2004 2:36 PM

604 Chapter 11 Recursion

convert it to an iterative algorithm. You can see the iterative method from Display 11.9
embedded in a full demonstration in the files IterativeBinarySearch.java and Iter-
ativeBinarySearchDemo.java on the accompanying CD.

Display 11.9 Iterative Version of Binary Search ✜

1 /**
2 Searches the array a for key. If key is not in the array segment, then −1 is
3 returned. Otherwise returns an index in the segment such that key == a[index].
4 Precondition: a[lowEnd] <= a[lowEnd + 1]<= ... <= a[highEnd]
5 */
6 public static int search(int[] a, int lowEnd, int highEnd, int key)
7 {
8 int first = lowEnd;
9 int last = highEnd;

10 int mid;

11 boolean found = false; //so far
12 int result = 0; //to keep compiler happy

13 while ((first <= last) && !(found))
14 {
15 mid = (first + last)/2;

16 if (key == a[mid])
17 {
18 found = true;
19 result = mid;
20 }
21 else if (key < a[mid])
22 {
23 last = mid − 1;
24 }
25 else if (key > a[mid])
26 {
27 first = mid + 1;
28 }
29 }

30 if (first > last)
31 result = −1;

32 return result;
33 }

extra code on CD

5640_ch11.fm Page 604 Wednesday, February 11, 2004 2:36 PM

codes604.html

Answers to Self-Test Exercises 605

Self-Test Exercises

Most modern compilers will convert certain simple recursive method definitions to
iterative ones before translating the code. In such cases there is no loss of efficiency for
using the recursive version in place of an iterative version.

15. Write a recursive method definition for the following method:

/**
 Precondition: n >= 1
 Returns the sum of the squares of the numbers 1 through n.
*/
public static int squares(int n)

For example, squares(3) returns 14 because 12 + 22 + 32 is 14.

■ If a problem can be reduced to smaller instances of the same problem, then a recur-
sive solution is likely to be easy to find and implement.

■ A recursive algorithm for a method definition normally contains two kinds of cases:
one or more cases that include at least one recursive call and one or more stopping
cases in which the problem is solved without any recursive calls.

■ When writing a recursive method definition, always check to see that the method
will not produce infinite recursion.

■ When you define a recursive method, use the three criteria given in the subsection
“Recursive Design Techniques” to check that the method is correct.

■ When you design a recursive method to solve a task, it is often necessary to solve a
more general problem than the given task. This may be required to allow for the
proper recursive calls, since the smaller problems may not be exactly the same prob-
lem as the given task. For example, in the binary search problem, the task was to
search an entire array, but the recursive solution is an algorithm to search any por-
tion of the array (either all of it or a part of it).

ANSWERS TO SELF-TEST EXERCISES

1. Hip Hip Hurray

2. public static void stars(int n)
{

System.out.print('*');
if (n > 1)

Chapter Summary

5640_ch11.fm Page 605 Wednesday, February 11, 2004 2:36 PM

606 Chapter 11 Recursion

stars(n − 1);
}

The following is also correct, but is more complicated:

public static void stars(int n)
{
 if (n <= 1)
 {
 System.out.print('*');
 }
 else
 {
 stars(n − 1);
 System.out.print('*');
 }
}

3. public static void backward(int n)
{

if (n < 10)
{

System.out.print(n);
}
else
{

System.out.print(n%10);//write last digit
backward(n/10);//write the other digits backward

}
}

4. public static void writeUp(int n)
{
 if (n >= 1)
 {
 writeUp(n − 1);
 System.out.print(n + " "); //write while the
 //recursion unwinds
 }
}

5. public static void writeDown(int n)
{
 if (n >= 1)
 {
 System.out.print(n + " "); //write while the
 //recursion winds
 writeDown(n − 1);
 }
}

5640_ch11.fm Page 606 Wednesday, February 11, 2004 2:36 PM

Answers to Self-Test Exercises 607

6. An error message that says stack overflow is telling you that the computer has attempted to
place more stack frames on the stack than are allowed on your system. A likely cause of this
error message is infinite recursion.

7. public static void cheers(int n)
{

while (n > 1)
{

 System.out.print("Hip ");
n−−;

}
 System.out.println("Hurray");
}

8. public static void stars(int n)
{

for (int count = 1; count <= n; count++)
System.out.print('*');

}

9. public static void backward(int n)
{

while (n >= 10)
{

System.out.print(n%10);//write last digit
n = n/10;//discard the last digit

}
System.out.print(n);

}

10. Trace for exercise 4: If n = 3, the code to be executed is

if (3 >= 1)
{
 writeUp(2);
 System.out.print(3 + " ");
}

The execution is suspended before the System.out.println. On the next recursion, n =
2; the code to be executed is

if (2 >= 1)
{
 writeUp(1);
 System.out.print(2 + " ");
}

5640_ch11.fm Page 607 Wednesday, February 11, 2004 2:36 PM

608 Chapter 11 Recursion

The execution is suspended before the System.out.println. On the next recursion, n =
1 and the code to be executed is

if (1 >= 1)
{
 writeUp(0);
 System.out.print(1 + " ");
}

The execution is suspended before the System.out.println. On the final recursion, n =
0 and the code to be executed is

if (0 >= 1) // condition false, body skipped
{
 // skipped
}

The suspended computations are completed from the most recent to the least recent. The
output is 1 2 3.

11. Trace for exercise 5: If n = 3, the code to be executed is

 if (3 >= 1)
 {
 System.out.print(3 + " ");
 writeDown(2);
 }

Next recursion, n = 2, the code to be executed is

 if (2 >= 1)
 {
 System.out.print(2 + " ");
 writeDown(1)
 }

Next recursion, n = 1, the code to be executed is

 if (1 >= 1)
 {
 System.out.print(1 + " ");
 writeDown(0)
 }

Final recursion, n = 0, and the if statement does nothing, ending the recursive calls:

 if (0 >= 1) // condition false
 {
 // this clause is skipped
 }

The output is 3 2 1.

12. 6

5640_ch11.fm Page 608 Wednesday, February 11, 2004 2:36 PM

Programming Projects 609

13. The output is 24. The method rose is the factorial method, usually written n! and defined
as follows:

n! is equal to n*(n − 1)*(n − 2)*...*1

14. public static double power(int x, int n)
{
 if (n < 0 && x == 0)
 {
 System.out.println(
 "Illegal argument to power.");
 System.exit(0);
 }

 if (n < 0)
 return (1/power(x, −n));
 else if (n > 0)
 return (power(x, n − 1)*x);
 else // n == 0
 return (1.0);
}

15. public static int squares(int n)
{
 if (n <= 1)
 return 1;
 else
 return (squares(n − 1) + n*n);
}

PROGRAMMING PROJECTS

1. Write a recursive method definition for a static method that has one parameter n of type
int and that returns the nth Fibonacci number. The Fibonacci numbers are F0 is 1, F1 is 1,
F2 is 2, F3 is 3, F4 is 5, and in general

Fi+2 = Fi + Fi+1 for i = 0, 1, 2, ...

Place the method in a class that has a main that tests the method.

2. The formula for computing the number of ways of choosing r different things from a set of
n things is the following:

 C(n, r) = n!/(r!*(n − r)!)

5640_ch11.fm Page 609 Wednesday, February 11, 2004 2:36 PM

project609a.html
project609b.html

610 Chapter 11 Recursion

The factorial method n! is defined by

 n! = n*(n−1)*(n−2)*...*1.

Discover a recursive version of the formula for C (n, r) and write a recursive method that
computes the value of the formula. Place the method in a class that has a main that tests the
method.

3. Towers of Hanoi. There is a story about Buddhist monks who are playing this puzzle with
64 stone disks. The story claims that when the monks finish moving the disks from one
post to a second via the third post, time will end.

A stack of n disks of decreasing size (from bottom to top) is placed on one of three posts.
The task is to move the disks one at a time from the first post to the second. To do this, any
disk can be moved from any post to any other post, subject to the rule that you can never
place a larger disk over a smaller disk. The (spare) third post is provided to make the
solution possible. Your task is to write a recursive static method that gives instructions for a
solution to this problem. We don’t want to bother with graphics, so you should output a
sequence of instructions that will solve the problem. The number of disks is a parameter to
the method.

Hint: If you could move up n-1 of the disks from the first post to the third post using the
second post as a spare, the last disk could be moved from the first post to the second post.
Then, by using the same technique (whatever that may be), you can move the n-1 disks
from the third post to the second post, using the first disk as a spare. There! You have the
puzzle solved. You only have to decide what the nonrecursive case is, what the recursive case
is, and when to output instructions to move the disks.

5640_ch11.fm Page 610 Wednesday, February 11, 2004 2:36 PM

project610.html

	Text: For additional online Programming Projects, click the CodeMate icons below.
	Text3: 11.4
	program project 11:
	4:
	1:
	2:

	code links 2:
	code links 3:
	code links 4:
	code links 1:
	code links 5:

