

CHAPTER

10

File I/O

10.1 INTRODUCTION TO FILE I/O 516

Streams 516

Text Files and Binary Files 517

10.2 TEXT FILES 518

Writing to a Text File 518

Pitfall: A

try Block Is a Block 524

Pitfall: Overwriting an Output File 525

Appending to a Text File 525

Tip:

toString Helps with Text File Output 526

Reading from a Text File 527

Tip: Reading Numbers 532

Testing for the End of a Text File 532

Path Names 535

Nested Constructor Invocations 536

System.in,

System.out, and

System.err 536

10.3 THE

File CLASS 539

Programming with the

File Class 539

10.4 BINARY FILES

✜ 543

Writing Simple Data to a Binary File 544

UTF and

writeUTF 549

Reading Simple Data from a Binary File 550

Checking for the End of a Binary File 554

Pitfall: Checking for the End of a File in the Wrong
Way 554

Binary I/O of Objects 557

The

Serializable Interface 557

Pitfall: Mixing Class Types in the Same File 561

Array Objects in Binary Files 561

10.5 RANDOM ACCESS TO BINARY FILES

✜ 563

Reading and Writing to the Same File 564

Pitfall: A

RandomAccessFile Need Not Start
Empty 569

CHAPTER SUMMARY 569
ANSWERS TO SELF-TEST EXERCISES 570
PROGRAMMING PROJECTS 574

5640_ch10.fm Page 515 Wednesday, February 11, 2004 2:33 PM

10

File I/O

As a leaf is carried by a stream, whether the stream
ends in a lake or in the sea, so too is the output of your
program carried by a stream not knowing if the stream
goes to the screen or to a file.

Washroom Wall of a
Computer Science Department (1995)

INTRODUCTION

In this chapter, we explain how you can write your programs to take input
from a file and send output to a file. This chapter covers the most common
ways of doing file I/O in Java. However, it is not an exhaustive study of Java
I/O classes. The Java I/O class library contains bewilderingly many classes and
an exhaustive treatment of all of them would be a book by itself.

PREREQUISITES

You need only some of Chapter 9 on exception handling to read this chapter.
You do not need Chapters 6, 7, or 8 on arrays, inheritance, and polymor-
phism, except for in the final subsection, which covers writing and reading of
arrays to binary files. If you have not yet covered some basic material on one-
dimensional arrays, you can, of course, simply omit this last subsection.

You may postpone all or part of this chapter if you wish. Nothing in the
rest of this book requires any of this chapter.

Introduction to File I/O

Good Heavens! For more than forty years I have been
speaking prose without knowing it.

Molière,

Le Bourgeois Gentilhomme

In this section we go over some basic concepts about file I/O before we go into
any Java details.

■ STREAMS

A stream

 is an object that allows for the flow of data between your program
and some I/O device or some file. If the flow is into your program, the stream

10.1

stream

5640_ch10.fm Page 516 Wednesday, February 11, 2004 2:33 PM

Introduction to File I/O 517

is called an input stream

. If the flow is out of your program, the stream is called an out-
put stream

. If the input stream flows from the keyboard, then your program will take
input from the keyboard. If the input stream flows from a file, then your program will
take its input from that file. Similarly, an output stream can go to the screen or to a file.

Although you may not realize it, you have already been using streams in your pro-
grams. The

System.out

 that you have already used (in such things as

Sys-

tem.out.println

) is an output stream connected to the screen.

System.in

 is an input
stream connected to the keyboard. You used

System.in

 in expressions like the following:

BufferedReader keyboard =
 new BufferedReader(new InputStreamReader(System.in));

These two streams are automatically available to your program. You can define other
streams that come from or go to files. Once you have defined them, you can use them
in your program in ways that are similar to how you use

System.out

 and

System.in

.

■ TEXT FILES AND BINARY FILES

Text files are files that appear to contain sequences of characters when viewed in a text
editor or read by a program. For example, the files that contain your Java programs are
text files. Text files are sometimes also called ASCII files because they contain data
encoded using a scheme known as ASCII coding. Files whose contents must be han-
dled as sequences of binary digits are called binary files

.

Although it is not strictly speaking correct, you can safely think of a text file as con-
taining a sequence of characters, and think of a binary file as containing a sequence of
binary digits. Another way to distinguish between binary files and text files is to note
that text files are designed to be read by human beings, whereas binary files are
designed to be read only by programs.

One advantage of text files is that they are usually the same on all computers, so you
can move your text files from one computer to another with few or no problems. The
implementation of binary files usually differs from one computer to another, so your
binary data files ordinarily must be read only on the same type of computer, and with
the same programming language, as the computer that created that file.

The advantage of binary files is that they are more efficient to process than text files.
Unlike other programming languages, Java also gives its binary files some of the advan-
tages of text files. In particular, Java binary files are platform-independent; that is, with

STREAMS

A stream is a flow of data. If the data flows into your program, then the stream is called an input
stream. If the data flows out of your program, the stream is called an output stream.

Streams are used for both console I/O, which you have been using already, and file I/O.

input stream

output stream

System.out
System.in

input stream
output stream

text file
ASCII file

binary file

5640_ch10.fm Page 517 Wednesday, February 11, 2004 2:33 PM

518 Chapter 10 File I/O

Self-Test Exercises

Java, you can move your binary files from one type of computer to another and your
Java programs will still be able to read the binary files. This combines the portability of
text files with the efficiency of binary files.

The one big advantage of text files is that you can read and write to them using a text
editor. With binary files, all the reading and writing must normally be done by a program.

1. A stream is a flow of data. From where and to where does the data flow in an input stream?
From where and to where does the data flow in an output stream?

2. What is the difference between a binary file and a text file?

Text Files

Polonius: What do you read, my lord?
Hamlet: Words, words, words.

William Shakespeare,

Hamlet

In this section, we describe the most common ways to do text file I/O in Java.

■ WRITING TO A TEXT FILE

The class

PrintWriter

 is the preferred stream class for writing to a text file. An object
of the class

PrintWriter

 has the methods

print

 and

println

, which are like the meth-
ods

System.out.print

 and

System.out.println

 that you have been using for screen
output, but with an object of the class

PrintWriter

, the output goes to a text file. Dis-
play 10.1 contains a simple program that uses

PrintWriter

 to send output to a text
file. Let’s look at the details of that program.

All the file I/O related classes we introduce in this chapter are in the package

java.io

, so all our program files begin with import statements similar to the ones in
Display 10.1.

TEXT FILES VERSUS BINARY FILES

Files that you write and read using an editor are called text files. Binary files represent data in a
way that is not convenient to read with a text editor, but that can be written to and read from a
program very efficiently.

10.2

PrintWriter

java.io

5640_ch10.fm Page 518 Wednesday, February 11, 2004 2:33 PM

Text Files 519

Display 10.1 Sending Output to a Text File

1 import java.io.PrintWriter;
2 import java.io.FileOutputStream;
3 import java.io.FileNotFoundException;

4 public class TextFileOutputDemo
5 {
6 public static void main(String[] args)
7 {
8 PrintWriter outputStream = null;
9 try

10 {
11 outputStream =
12 new PrintWriter(new FileOutputStream("stuff.txt"));
13 }
14 catch(FileNotFoundException e)
15 {
16 System.out.println("Error opening the file stuff.txt.");
17 System.exit(0);
18 }

19 System.out.println("Writing to file.");

20 outputStream.println("The quick brown fox");
21 outputStream.println("jumped over the lazy dog.");

22 outputStream.close();

23 System.out.println("End of program.");
24 }
25 }

SAMPLE DIALOGUE

Writing to file.
End of program.

FILE stuff.txt (after the program is run.)

The quick brown fox
jumped over the lazy dog.

You can read this file
using a text editor.

5640_ch10.fm Page 519 Wednesday, February 11, 2004 2:33 PM

520 Chapter 10 File I/O

The program in Display 10.1 creates a text file named

stuff.txt

 that a person can
read using an editor or that another Java program can read. The program creates an
object of the class

PrintWriter

 as follows:

outputStream =
 new PrintWriter(new FileOutputStream("stuff.txt"));

The variable

outputStream

 is of type

PrintWriter

 and is declared outside the

try

block. The preceding two lines of code connect the stream named

outputStream

 to the
file named

stuff.txt

. This is called opening the file

. When you connect a file to a
stream in this way, your program always starts with an empty file. If the file

stuff.txt

already exists, the old contents of

stuff.txt

 will be lost. If the file

stuff.txt

 does not
exist, then a new, empty file named

stuff.txt

 will be created.

We want to associate the output stream outputStream with the file named
stuff.txt. However, the class PrintWriter has no constructor that takes a file name as
its argument. So we use the class FileOutputStream to create a stream that can be used
as an argument to a PrintWriter constructor. The expression

new FileOutputStream("stuff.txt")

takes a file name as an argument and creates an anonymous object of the class FileOut-
putStream, which is then used as an argument to a constructor for the class Print-
Writer as follows:

new PrintWriter(new FileOutputStream("stuff.txt"))

This produces an object of the class PrintWriter that is connected to the file
stuff.txt. Note that the name of the file, in this case stuff.txt, is given as a String
value and so is given in quotes.

If you want to read the file name from the keyboard, you could read the name to a
variable of type String and use the String variable as the argument to the FileOutput-
Stream constructor.

When you open a text file in the way just discussed, a FileNotFoundException can
be thrown, and any such possible exception should be caught in a catch block. (Actu-
ally, it is the FileOutputStream constructor that might throw the FileNotFoundExcep-
tion, but the net effect is the same.)

Notice that the try block in Display 10.1 encloses only the opening of the file. That
is the only place that an exception might be thrown. Also note that the variable out-
putStream is declared outside of the try block. This is so that the variable output-
Stream can be used outside of the try block. Remember, anything declared in a block
(even in a try block) is local to the block.

We said that when you open a text file for writing output to the file, the constructor
might throw a FileNotFoundException. But in this situation you want to create a new
file for output, so why would you care that the file was not found? The answer is simply
that the exception is poorly named. A FileNotFoundException does not mean that the

opening a file

FileOutput-
Stream

file name

reading the
file name

FileNotFound-
Exception

5640_ch10.fm Page 520 Wednesday, February 11, 2004 2:33 PM

Text Files 521

file was not found. In this case, it actually means that the file could not be created. A
FileNotFoundException is thrown if it is impossible to create the file—for example,
because the file name is already used for a directory (folder) name.

OPENING A TEXT FILE FOR WRITING OUTPUT

You create a stream of the class PrintWriter and connect it to a text file for writing as follows.

SYNTAX:

PrintWriter Output_Stream_Name;
Output_Stream_Name =
 new PrintWriter(new FileOutputStream(File_Name));

EXAMPLE:

PrintWriter outputStream = null;
outputStream =
 new PrintWriter(new FileOutputStream("stuff.txt"));

After this, you can use the methods println and print to write to the file.

When used in this way, the FileOutputStream constructor, and thus the PrintWriter con-
structor invocation, can throw a FileNotFoundException, which is a kind of IOException.

FILE NAMES

The rules for how you spell file names depend on your operating system, not on Java. When you
give a file name to a Java constructor for a stream, you are not giving the constructor a Java iden-
tifier. You are giving the constructor a string corresponding to the file name. A suffix, such as
.txt in stuff.txt, has no special meaning to a Java program. We are using the suffix .txt to
indicate a text file, but that is just a common convention. You can use any file names that are
allowed by your operating system.

A FILE HAS TWO NAMES

Every input file and every output file used by your program has two names: (1) the real file name
that is used by the operating system and (2) the name of the stream that is connected to the file.

The stream name serves as a temporary name for the file and is the name that is primarily used
within your program. After you connect the file to the stream, your program always refers to the
file by using the stream name.

5640_ch10.fm Page 521 Wednesday, February 11, 2004 2:33 PM

522 Chapter 10 File I/O

A FileNotFoundException is a kind of IOException, so a catch block for an IOEx-
ception would also work and would look more sensible. However, it is best to catch
the most specific exception that you can, since that can give more information.

 As illustrated in Display 10.1, the method println of the class PrintWriter works
the same for writing to a text file as the method System.out.println works for writing
to the screen. The class PrintWriter also has the method print, which behaves just
like System.out.print except that the output goes to a text file. Display 10.2 describes
some of the methods in the class PrintWriter.

Display 10.2 Some Methods of the Class PrintWriter (Part 1 of 2)

PrintWriter and FileOutputStream are in the java.io package.

public PrintWriter(OutputStream streamObject)

This is the only constructor you are likely to need. There is no constructor that accepts a file name as an
argument. If you want to create a stream using a file name, you use

new PrintWriter(new FileOutputStream(File_Name))

When the constructor is used in this way, a blank file is created. If there already was a file named
File_Name, then the old contents of the file are lost. If you want instead to append new text to the end of
the old file contents, use

new PrintWriter(new FileOutputStream(File_Name, true))

(For an explanation of the argument true, read the subsection “Appending to a Text File.“)

When used in either of these ways, the FileOutputStream constructor, and so the PrintWriter con-
structor invocation, can throw a FileNotFoundException, which is a kind of IOException.

If you want to create a stream using an object of the class File, you can use a File object in place of the
File_Name. (The File class will be covered in Section 10.3. We discuss it here so that you will have a more
complete reference in this display, but you can ignore the reference to the class File until after you’ve
read that section.)

public final void println(Argument)a

The Argument can be a string, character, integer, floating-point number, boolean value, or any combi-
nation of these, connected with + signs. The Argument can also be any object, although it will not work as
desired unless the object has a properly defined toString() method. The Argument is output to the file
connected to the stream. After the Argument has been output, the line ends, and so the next output is sent
to the next line.

a The modifier final is discussed in Chapter 7, which covers inheritance. If you have not yet read Chapter 7, you
can safely ignore any reference to final.

println
print

5640_ch10.fm Page 522 Wednesday, February 11, 2004 2:33 PM

Text Files 523

Display 10.2 Some Methods of the Class PrintWriter (Part 2 of 2)

When your program is finished writing to a file, it should close the stream con-
nected to that file. In Display 10.1, the stream connected to the file stuff.txt is closed
with the statement

outputStream.close();

The class PrintWriter, and every other class for file output or file input streams, has a
method named close. When this method is invoked, the system releases any resources
used to connect the stream to the file and does any other housekeeping that is needed.
If your program does not close a file before the program ends, Java will close it for you
when the program ends, but it is safest to close the file with an explicit call to close.

Output streams connected to files are often buffered, which means that, rather than
physically writing every instance of output data as soon as possible, the data is saved in

public final void print(Argument)

This is the same as println, except that this method does not end the line, so the next output will be on
the same line.

public void close()

Closes the stream’s connection to a file. This method calls flush before closing the file.

public void flush()

Flushes the output stream. This forces an actual physical write to the file of any data that has been buffered
and not yet physically written to the file. Normally, you should not need to invoke flush.

CLOSING A TEXT FILE

When your program is finished writing to a file or reading from a file, it should close the stream
connected to that file by invoking the method named close.

SYNTAX:

Stream_Object.close();

EXAMPLES:

outputStream.close();
inputStream.close();

buffered

5640_ch10.fm Page 523 Wednesday, February 11, 2004 2:33 PM

524 Chapter 10 File I/O

Pitfall

a temporary location, known as a buffer; when enough data is accumulated in this tem-
porary location, it is physically written to the file. This can add to efficiency, since
physical writes to a file can be slow. The method flush causes a physical write to the file
of any buffered data. The method close includes an invocation of the method flush.

It may seem like there is no reason to use the method close to close a file. If your
program ends normally but without closing a file, the system will automatically close it
for you. So why should you bother to close files with an explicit call to the method
close? There are at least two reasons. First, if your program ends abnormally, then Java
may not be able to close the file for you. This could damage the file. In particular, if it
is an output file, any buffered output will not have been physically written to the file.
So the file will be incomplete. The sooner you close a file, the less likely it is that this
will happen. Second, if your program writes to a file and later reads from the same file,
it must close the file after it is through writing to the file and then reopen the file for
reading. (Java does have a class that allows a file to be opened for both reading and
writing, which we will discuss in Section 10.5.)

A try BLOCK IS A BLOCK

Notice that in Display 10.1 we declare the variable outputStream outside of the try block. If you
were to move that declaration inside the try block, you would get a compiler error message. Let’s
see why.

Suppose you replace

PrintWriter outputStream = null;
try
{
 outputStream =
 new PrintWriter(new FileOutputStream("stuff.txt"));
}

in Display 10.1 with the following:

try
{
 PrintWriter outputStream =
 new PrintWriter(new FileOutputStream("stuff.txt"));
}

This replacement looks innocent enough, but it makes the variable outputStream a local vari-
able for the try block, which would mean that you could not use outputStream outside of the
try block. If you make this change and try to compile the changed program, you will get an error
message saying that outputStream when used outside the try block is an undefined identifier.

buffer

5640_ch10.fm Page 524 Wednesday, February 11, 2004 2:33 PM

Text Files 525

Pitfall

OVERWRITING AN OUTPUT FILE

When you connect a stream to a text file for writing to the text file, as illustrated by what follows,
you always produce an empty file:

outputStream =
 new PrintWriter(new FileOutputStream("stuff.txt"));

If there is no file named stuff.txt, this will create an empty file named stuff.txt. If a file
named stuff.txt already exists, then this will eliminate that file and create a new, empty file
named stuff.txt. So if there is a file named stuff.txt before this file opening, then all the
data in that file will be lost. The section “The File Class” tells you how to test to see whether a file
already exists so that you can avoid accidentally overwriting a file. The following subsection
shows you how to add data to a text file without losing the data that is already in the file.

■ APPENDING TO A TEXT FILE

When you open a text file for writing in the way we did it in Display 10.1 and a file
with the given name already exists, the old contents are lost. However, sometimes you
instead want to add the program output to the end of the file. This is called appending
to a file. If you wanted to append program output to the file stuff.txt, you would
connect the file to the stream outputStream in the following manner:

outputStream =
 new PrintWriter(new FileOutputStream("stuff.txt", true));

If the file stuff.txt does not already exist, Java will create an empty file of that name
and append the output to the end of this empty file. So if there is no file named
stuff.txt, the effect of opening the file is the same as in Display 10.1. However, if the
file stuff.txt already exists, then the old contents will remain, and the program’s out-
put will be placed after the old contents of the file.

 When appending to a text file in this way, you would still use the same try and
catch blocks as in Display 10.1.

That second argument of true deserves a bit of explanation. Why did the designers
use true to signal appending? Why not something like the string "append"? The reason
is that this version of the constructor for the class FileOutputStream was designed to
also allow you to use a Boolean variable (or expression) to decide whether you append
to an existing file or create a new file. For example, the following might be used:

System.out.println(
 "Enter A for append or N for a new file:");
char answer;
<Use your favorite way to read a single character into the variable answer.>

appending

5640_ch10.fm Page 525 Wednesday, February 11, 2004 2:33 PM

526 Chapter 10 File I/O

Tip

boolean append = (answer == 'A' || answer == 'a');
outputStream =
 new PrintWriter(new FileOutputStream("stuff.txt", append));

From this point on, your program writes to the file in exactly the same way that the pro-
gram in Display 10.1 does. If the user answered with upper- or lowercase A, then any
input will be added after the old file contents. If the user answered with upper- or low-
ercase N (or with anything other than an A), then any old contents of the file are lost.

toString HELPS WITH TEXT FILE OUTPUT

In Chapter 4 we noted that if a class has a suitable toString() method and anObject is an
object of that class, then anObject can be used as an argument to System.out.println and
that will produce sensible output.1 The same thing applies to the methods println and print of

OPENING A TEXT FILE FOR APPENDING

To create an object of the class PrintWriter and connect it to a text file for appending to the
end of the text already in the file, proceed as follows.

SYNTAX:

Output_Stream_Name =
 new PrintWriter(
 new FileOutputStream(File_Name, True_Boolean_Expression));

EXAMPLE:

PrintWriter outputStream;
outputStream =
 new PrintWriter(new FileOutputStream("stuff.txt", true));

After this statement, you can use the methods println and print to write to the file, and the
new text will be written after the old text in the file.

(If you want to create a stream using an object of the class File, you can use a File object in
place of the File_Name. The File class is discussed in the section entitled “The File Class.”)

When used in this way, the FileOutputStream constructor, and so the PrintWriter con-
structor invocation, can throw a FileNotFoundException, which is a kind of IOException.

1 There is a more detailed discussion of this in Chapter 8, but you need not read Chapter 8 to
use this fact.

5640_ch10.fm Page 526 Wednesday, February 11, 2004 2:33 PM

Text Files 527

Self-Test Exercises

the class PrintWriter. Both println and print of the class PrintWriter can take any
object as an argument and will produce reasonable output so long as the object has a sensible
toString() method.

3. What kind of exception might be thrown by the following, and what would it indicate if
this exception were thrown?

PrintWriter outputStream =
 new PrintWriter(new FileOutputStream("stuff.txt"));

4. Does the class PrintWriter have a constructor that accepts a string (for a file name) as an
argument, so that the following code would be legal?

PrintWriter outputStream =
 new PrintWriter("stuff.txt");

5. Write some code that will create a stream named outStream that is a member of the class
PrintWriter, and that connects this stream to a text file named sam so that your program
can send output to the file. Do this in a way such that the file sam always starts out empty.
So, if there already is a file named sam, the old contents of sam are lost.

6. As in exercise 5, write some code that will create a stream named outStream that is a mem-
ber of the class PrintWriter, and that connects this stream to a text file named sam so that
your program can send output to the file. This time, however, do it in such a way that, if
the file sam already exists, the old contents of sam will not be lost and the program output
will be written after the old contents of the file.

7. The class Person was defined in Display 5.11 of Chapter 5. Suppose mary is an object of
the class Person and suppose outputStream is connected to a text file as in Display 10.1.
Will the following send sensible output to the file connected to outputStream?

outputStream.println(mary);

■ READING FROM A TEXT FILE

The class BufferedReader is the preferred stream class to use for reading from a text
file. The use of BufferedReader is illustrated in Display 10.3, which contains a pro-
gram that reads two lines from a text file named morestuff.txt and writes them back
to the screen. The file morestuff.txt is a text file that a person could have created with
a text editor or that a Java program could have created using PrintWriter.

Buffered-
Reader

5640_ch10.fm Page 527 Wednesday, February 11, 2004 2:33 PM

528 Chapter 10 File I/O

Display 10.3 Reading Input from a Text File (Part 1 of 2)

1 import java.io.BufferedReader;
2 import java.io.FileReader;
3 import java.io.FileNotFoundException;
4 import java.io.IOException;

5 public class TextFileInputDemo
6 {
7 public static void main(String[] args)
8 {
9 try

10 {
11 BufferedReader inputStream =
12 new BufferedReader(new FileReader("morestuff.txt"));

13 String line = inputStream.readLine();
14 System.out.println(
15 "The first line read from the file is:");
16 System.out.println(line);
17
18 line = inputStream.readLine();
19 System.out.println(
20 "The second line read from the file is:");
21 System.out.println(line);
22 inputStream.close();
23 }
24 catch(FileNotFoundException e)
25 {
26 System.out.println("File morestuff.txt was not found");
27 System.out.println("or could not be opened.");
28 }
29 catch(IOException e)
30 {
31 System.out.println("Error reading from morestuff.txt.");
32 }
33 }
34 }

FILE morestuff.txt

1 2 3
Jack jump over
the candle stick.

This file could have been made with a text
editor or by another Java program.

5640_ch10.fm Page 528 Wednesday, February 11, 2004 2:33 PM

Text Files 529

The program opens the text file morestuff.txt as follows:

BufferedReader inputStream =
 new BufferedReader(new FileReader("morestuff.txt"));

The class BufferedReader, like the class PrintWriter, has no constructor that takes a file
name as its argument, so we need to use another class—in this case, the class FileReader—
to convert the file name to an object that can be an argument to BufferedReader.

We have already used objects of the class BufferedReader, created as follows, for
reading from the keyboard:

BufferedReader keyboard =
 new BufferedReader(new InputStreamReader(System.in));

An object of the class BufferedReader that is connected to a text file, as in Display
10.3, has the same method readLine that we used to read from the keyboard, but it

OPENING A TEXT FILE FOR READING

You create a stream of the class BufferedReader and connect it to a text file for reading as
follows:

SYNTAX:

 BufferedReader Stream_Object =
 new BufferedReader(new FileReader(File_Name));

EXAMPLE:

BufferedReader inputStream =
 new BufferedReader(new FileReader("morestuff.txt"));

 After this statement, you can use the methods readLine and read to read from the file.

When used in this way, the FileReader constructor, and hence the BufferedReader construc-
tor invocation, can throw a FileNotFoundException, which is a kind of IOException.

Display 10.3 Reading Input from a Text File (Part 2 of 2)

SCREEN OUTPUT

The first line read from the file is:
1 2 3
The second line read from the file is:
Jack jump over

opening a file

readLine

5640_ch10.fm Page 529 Wednesday, February 11, 2004 2:33 PM

530 Chapter 10 File I/O

reads from a text file rather than the keyboard. This use of readLine to read from a text
file is illustrated in Display 10.3.

Display 10.4 describes some of the methods in the class BufferedReader. Notice
that there are only two methods for reading from a text file, readLine and read. We
have already discussed readLine.

Display 10.4 Some Methods of the Class BufferedReader

BufferedReader and FileReader are in the java.io package.

public BufferedReader(Reader readerObject)

This is the only constructor you are likely to need. There is no constructor that accepts a file name as an
argument. If you want to create a stream using a file name, you use

new BufferedReader(new FileReader(File_Name))

When used in this way, the FileReader constructor, and thus the BufferedReader constructor invoca-
tion, can throw a FileNotFoundException, which is a kind of IOException.

The File class will be covered in the section entitled “The File Class.” We discuss it here so that you will
have a more complete reference in this display, but you can ignore the following reference to the class
File until after you’ve read that section.

If you want to create a stream using an object of the class File, you use

new BufferedReader(new FileReader(File_Object))

When used in this way, the FileReader constructor, and thus the BufferedReader constructor invoca-
tion, can throw a FileNotFoundException, which is a kind of IOException.

public String readLine() throws IOException

Reads a line of input from the input stream and returns that line. If the read goes beyond the end of the
file, null is returned. (Note that an EOFException is not thrown at the end of a file. The end of a file is
signaled by returning null.)

public int read() throws IOException

Reads a single character from the input stream and returns that character as an int value. If the read goes
beyond the end of the file, then −1 is returned. Note that the value is returned as an int. To obtain a
char, you must perform a type cast on the value returned. The end of a file is signaled by returning −1.
(All of the “real” characters return a positive integer.)

public long skip(long n) throws IOException

Skips n characters.

public void close() throws IOException

Closes the stream’s connection to a file.

5640_ch10.fm Page 530 Wednesday, February 11, 2004 2:33 PM

Text Files 531

Self-Test Exercises

The method read reads a single character. But, note that read returns a value of type
int that corresponds to the character read; it does not return the character itself. Thus,
to get the character, you must use a type cast, as in

char next = (char)(inputStream.read());

If inputStream is in the class BufferedReader and is connected to a text file, this will
set next equal to the first character in the file that has not yet been read.

Notice that the program in Display 10.3 catches two kinds of exceptions: FileNot-
FoundException and IOException. An attempt to open the file may throw a FileNot-
FoundException, and any of the invocations of inputStream.readLine() may throw
an IOException. Because FileNotFoundException is a kind of IOException, you could
use only the catch block for IOException. However, if you were to do this, then you
would get less information if an exception were thrown. If you use only one catch
block and an exception is thrown, you will not know if the problem occurred when
opening the file or when reading from the file after it was opened.

8. Write some code that will create a stream named fileIn that is a member of the class
BufferedReader and that connects the stream to a text file named joe so that your pro-
gram can read input from the text file joe.

9. What is the type of a value returned by the method readLine in the class Buffered-
Reader? What is the type of a value returned by the method read in the class Buffered-
Reader?

10. Might the methods read and readLine in the class BufferedReader throw an exception?
If so, what type of exception?

11. One difference between the try blocks in Display 10.1 and Display 10.3 is that the try
block in Display 10.1 encloses only the opening of the file, while the try block in Display
10.3 encloses most of the action in the program. Why is the try block in Display 10.3
larger than the one in Display 10.1?

12. Might the following throw an exception that needs to be caught or declared in a throws
clause?

BufferedReader inputStream =
 new BufferedReader(new FileReader("morestuff.txt"));

FileNotFoundException

If your program attempts to open a file for reading and there is no such file, then a FileNot-
FoundException is thrown. As you saw earlier in this chapter, a FileNotFoundException is
also thrown in some other situations. A FileNotFoundException is a kind of IOException.

read method

5640_ch10.fm Page 531 Wednesday, February 11, 2004 2:33 PM

532 Chapter 10 File I/O

Tip

(The stream inputStream would be used to read from the text file morestuff.txt.)

13. Might the following throw an exception that needs to be caught or declared in a throws
clause?

BufferedReader keyboard =
 new BufferedReader(new InputStreamReader(System.in));

(The stream keyboard would be used to read from the keyboard.)

14. In both exercises 12 and 13 the code invokes a constructor for the class BufferedReader
but one can throw an exception while the other does not throw any exception. How can
this be?

READING NUMBERS

The class BufferedReader has no methods to read a number from a text file. You can read num-
bers from a text file using BufferedReader in the same way that you read numbers from the
keyboard using BufferedReader. To read a single number on a line by itself, read it using the
method readLine and then use Integer.parseInt, Double.parseDouble, or some similar
method to convert the string read to a number. If there are multiple numbers on a single line, read
the line using readLine and then use StringTokenizer to decompose the string into tokens.
Then, use Integer.parseInt or a similar method to convert each token to a number.

■ TESTING FOR THE END OF A TEXT FILE

When using the class BufferedReader, if your program tries to read beyond the end of
the file with either of the methods readLine or read, then the method returns a special
value to signal that the end of the file has been reached. When readLine tries to read
beyond the end of a file, it returns the value null. Thus, your program can test for the
end of the file by testing to see if readLine returns null. This technique is illustrated in
Display 10.5. When the method read tries to read beyond the end of a file, it returns
the value −1. Because the int value corresponding to each ordinary character is posi-
tive, this can be used to test for the end of a file.

(As you will see when we discuss binary file input, when your program tries to read
beyond the end of a binary file, it throws an EOFException. When reading from a text
file using BufferedReader, an EOFException is never thrown.)

5640_ch10.fm Page 532 Wednesday, February 11, 2004 2:33 PM

Text Files 533

Display 10.5 Checking for the End of a Text File (Part 1 of 2)

1 import java.io.BufferedReader;
2 import java.io.FileReader;
3 import java.io.PrintWriter;
4 import java.io.FileOutputStream;
5 import java.io.FileNotFoundException;
6 import java.io.IOException;

7 /**
8 Makes numbered.txt the same as original.txt, but with each line numbered.
9 */

10 public class TextEOFDemo
11 {
12 public static void main(String[] args)
13 {
14 try
15 {
16 BufferedReader inputStream =
17 new BufferedReader(new FileReader("original.txt"));
18 PrintWriter outputStream =
19 new PrintWriter(new FileOutputStream("numbered.txt"));

20 int count = 0;
21 String line = inputStream.readLine();
22 while (line != null)
23 {
24 count++;
25 outputStream.println(count + " " + line);
26 line = inputStream.readLine();
27 }
28 inputStream.close();
29 outputStream.close();
30 }
31 catch(FileNotFoundException e)
32 {
33 System.out.println("Problem opening files.");
34 }
35 catch(IOException e)
36 {
37 System.out.println("Error reading from original.txt.");
38 }
39 }
40 }

5640_ch10.fm Page 533 Wednesday, February 11, 2004 2:33 PM

534 Chapter 10 File I/O

Self-Test Exercises

15. Does the class BufferedReader have a method to read an int value from a text file?

16. What happens when the method readLine in the class BufferedReader attempts to read
beyond the end of a file? How can you use this to test for the end of a file?

17. What is the type of the value returned by the method read in the class BufferedReader?

18. What happens when the method read in the class BufferedReader attempts to read
beyond the end of a file? How can you use this to test for the end of a file?

19. Does the program in Display 10.5 work correctly if original.txt is an empty file?

CHECKING FOR THE END OF A TEXT FILE

The method readLine of the class BufferedReader returns null when it tries to read beyond
the end of a text file. The method read of the class BufferedReader returns −1 when it tries to
read beyond the end of a text file.

Display 10.5 Checking for the End of a Text File (Part 2 of 2)

FILE original.txt

Little Miss Muffet
sat on a tuffet
eating her curves away.
Along came a spider
who sat down beside her
and said "Will you marry me?"

FILE numbered.txt (after the program is run)

1 Little Miss Muffet
2 sat on a tuffet
3 eating her curves away.
4 Along came a spider
5 who sat down beside her
6 and said "Will you marry me?"

If your version of numbered.txt has numbered
blank lines after 6, that means you had blank
lines at the end of original.txt.

5640_ch10.fm Page 534 Wednesday, February 11, 2004 2:33 PM

Text Files 535

■ PATH NAMES

When giving a file name as an argument to a constructor for opening a file in any of
the ways we have discussed, you may use a simple file name, in which case it is assumed
that the file is in the same directory (folder) as the one in which the program is run.
You can also use a full or relative path name.

 A path name not only gives the name of the file, but also tells what directory
(folder) the file is in. A full path name, as the name suggests, gives a complete path
name, starting from the root directory. A relative path name gives the path to the file,
starting with the directory that your program is in. The way that you specify path
names depends on your particular operating system.

A typical UNIX path name is

/user/sallyz/data/data.txt

To create an input stream connected to this file, you use

BufferedReader inputStream =
 new BufferedReader(new FileReader("/user/sallyz/data/data.txt"));

Windows uses \ instead of / in path names. A typical Windows path name is

C:\dataFiles\goodData\data.txt

To create an input stream connected to this file, you use

BufferedReader inputStream =
 new BufferedReader(
 new FileReader("C:\\dataFiles\\goodData\\data.txt"));

 Note that you need to use \\ in place of \, since otherwise Java will interpret a
backslash paired with a character, such as \d, as an escape character. Although you must
worry about using a backslash (\) in a quoted string, this problem does not occur with
path names read in from the keyboard.

One way to avoid these escape-character problems altogether is to always use UNIX
conventions when writing path names. A Java program will accept a path name written
in either Windows or UNIX format, even if it is run on a computer with an operating
system that does not match the syntax. Thus, an alternate way to create an input stream
connected to the Windows file

C:\dataFiles\goodData\data.txt

is the following:

BufferedReader inputStream =
 new BufferedReader(
 new FileReader("C:/dataFiles/goodData/data.txt"));

path names

 using \, \\, or /

5640_ch10.fm Page 535 Wednesday, February 11, 2004 2:33 PM

536 Chapter 10 File I/O

■ NESTED CONSTRUCTOR INVOCATIONS

Expressions with two constructors, such as the following, are common when dealing
with Java’s library of I/O classes:

new BufferedReader(new FileReader("original.txt"))

This is a manifestation of the general approach to how Java I/O libraries work. Each
I/O class serves one or a small number of functions. To obtain full functionality you
normally need to combine two (or more) class constructors. For example, in the above
example, the object new FileReader("original.txt") establishes a connection with
the file original.txt but provides only very primitive methods for input. The con-
structor for BufferedReader takes this file reader object and adds a richer collection of
input methods. In these cases the inner object, such as new FileReader("origi-
nal.txt"), is transformed into an instance variable of the outer object, such as Buff-
eredReader. (The instance variable might be literally the object produced by the inner
constructor or it might be derived from that object in some way.)

The situation is similar to that of what we did with the class ConsoleIn (Display
9.12). The class ConsoleIn has an instance variable of type BufferedReader that is con-
nected to the keyboard (by System.in), and all the input is ultimately done by this
BufferedReader object, but the methods of the class ConsoleIn add a user-friendly
interface for this simple input facility.

20. Of the classes PrintWriter, BufferedReader, FileReader, and FileOutputStream,
which have a constructor that accepts a file name as an argument?

21. Is the following legal?

FileReader readerObject =
 new FileReader("myFile.txt");

BufferedReader inputStream =
 new BufferedReader(readerObject);

■ System.in, System.out, AND System.err

The streams System.in, System.out, and System.err are three streams that are auto-
matically available to your Java code. You have already been using System.in and Sys-
tem.out. System.err is just like System.out, except that it has a different name. For
example, both of the following statements will send the string "Hello" to the screen so
the screen receives two lines each containing "Hello":

System.out.println("Hello");
System.err.println("Hello");

Self-Test Exercises

5640_ch10.fm Page 536 Wednesday, February 11, 2004 2:33 PM

Text Files 537

Self-Test Exercises

The output stream System.out is intended to be used for normal output from code
that is not in trouble. System.err is meant to be used for error messages.

Having two different standard output streams can be handy when you redirect out-
put. For example, you can redirect the regular output to one file and redirect the error
messages to a different file. Java allows you to redirect any of these three standard
streams to or from a file (or other I/O device). This is done with the static methods
setIn, setOut, and setErr of the class System.

For example, suppose your code connects the output stream errStream (of a type to
be specified later) to a text file. You can then redirect the stream System.err to this text
file as follows:

System.setErr(errStream);

If the following appears later in your code:

System.out.println("Hello from System.out.");
System.err.println("Hello from System.err.");

then "Hello from System.out." will be written to the screen, but "Hello from Sys-
tem.err." will be written to the file connected to the output stream errStream. A sim-
ple program illustrating this is given in Display 10.6.

Note that the arguments to the redirecting methods must be of the types shown in
the following headings, and these are classes we do not discuss in this book:

public static void setIn(InputStream inStream)
public static void setOut(PrintStream outStream)
public static void setErr(PrintStream outStream)

None of the input or output streams we constructed in our previous programs are of
a type suitable to be an argument to any of these redirection methods. Space con-
straints keep us from giving any more details on the stream classes that are suitable for
producing arguments for these redirection methods. However, you can use Display
10.6 as a model to allow you to redirect either System.err or System.out to a text file
of your choice.

22. Suppose you want the program in Display 10.6 to send an error message to the screen and
regular (System.out) output to the file errormessages.txt. (Just the reverse of what the
program in Display 10.6 does.) How would you change the program in Display 10.6?

23. Suppose you want the program in Display 10.6 to send all output (both System.out and
System.err) to the file errormessages.txt. How would you change the program in
Display 10.6?

redirecting output

5640_ch10.fm Page 537 Wednesday, February 11, 2004 2:33 PM

538 Chapter 10 File I/O

Display 10.6 Redirecting Error Messages

1 import java.io.PrintStream;
2 import java.io.FileOutputStream;
3 import java.io.FileNotFoundException;

4 public class RedirectionDemo
5 {
6 public static void main(String[] args)
7 {
8 PrintStream errStream = null;
9 try

10 {
11 errStream =
12 new PrintStream(
13 new FileOutputStream("errormessages.txt"));
14 }
15 catch(FileNotFoundException e)
16 {
17 System.out.println(
18 "Error opening file with FileOutputStream.");
19 }

20 System.setErr(errStream);

21 System.err.println("Hello from System.err.");
22 System.out.println("Hello from System.out.");
23 System.err.println("Hello again from System.err.");

24 errStream.close();
25 }
26 }

FILE errormessages.txt

Hello from System.err.
Hello again from System.err.

SCREEN OUTPUT

Hello from System.out.

None of System.in, System.out, or
System.err needs to be closed, but the
streams you create should be explicitly closed.

Note the stream classes used.

5640_ch10.fm Page 538 Wednesday, February 11, 2004 2:33 PM

The File Class 539

The File Class
The scars of others should teach us caution.

Saint Jerome

In this section we describe the class File, which is not really an I/O stream class but is
often used in conjunction with file I/O. The class File is so important to file I/O pro-
gramming that it was even placed in the java.io package.

■ PROGRAMMING WITH THE File CLASS

The File class contains methods that allow you to check various properties of a file,
such whether there is a file with a specified name, whether the file can be written to,
and so forth. Display 10.7 gives a sample program that uses the class File with text
files. (The class File works the same with binary files as it does with text files.)

Note that the File class constructor takes a name, known as the abstract name, as
an (string) argument. So the File class really checks properties of names. For example,
the method exists tests whether there is a file with the abstract name. Moreover, the
abstract name may be a potential directory (folder) name, not necessarily a potential
file name. For example, the method isDirectory tests whether the abstract name is
really the name of a directory (folder). The abstract name may be either a relative path
name (which includes the case of a simple file name) or a full path name.

Display 10.8 lists some of the methods in the class File.

THE File CLASS

The File class is like a wrapper class for file names. The constructor for the class File takes a
string as an argument and produces an object that can be thought of as the file with that name.
You can use the File object and methods of the class File to answer questions, such as: Does
the file exist? Does your program have permission to read the file? Does your program have per-
mission to write to the file? Display 10.10 has a summary of some of the methods for the class File.

EXAMPLE:

File fileObject = new File("data.txt");
if (! fileObject.canRead())
 System.out.println("File data.txt is not readable.");

10.3

5640_ch10.fm Page 539 Wednesday, February 11, 2004 2:33 PM

540 Chapter 10 File I/O

Display 10.7 Using the File Class (Part 1 of 2)

1 import java.io.BufferedReader;
2 import java.io.InputStreamReader;
3 import java.io.IOException;
4 import java.io.File;
1 import java.io.PrintWriter;
2 import java.io.FileOutputStream;
3 import java.io.FileNotFoundException;

4 public class FileClassDemo
5 {
6 public static void main(String[] args)
7 {
8 BufferedReader keyboard =
9 new BufferedReader(new InputStreamReader(System.in));

10 String line = null;
11 String fileName = null;

12 try
13 {
14 System.out.println("I will store a line of text for you.");
15 System.out.println("Enter the line of text:");
16 line = keyboard.readLine();

17 System.out.println("Enter a file name to hold the line:");
18 fileName = keyboard.readLine();
19 fileName = fileName.trim();
20 File fileObject = new File(fileName);
21 while (fileObject.exists())
22 {
23 System.out.println("There already is a file named "
24 + fileName);
25 System.out.println("Enter a different file name:");
26 fileName = keyboard.readLine();
27 fileName = fileName.trim();
28 fileObject = new File(fileName);
29 }
30 }

31 catch(IOException e)
32 {
33 System.out.println("Error reading from the keyboard. ");
34 System.exit(0);
35 }

5640_ch10.fm Page 540 Wednesday, February 11, 2004 2:33 PM

The File Class 541

Display 10.8 Some Methods in the Class File (Part 1 of 3)

File is in the java.io package.

public File(String File_Name)

Constructor. File_Name can be either a full or a relative path name (which includes the case of a simple file
name). File_Name is referred to as the abstract path name.

Display 10.7 Using the File Class (Part 2 of 2)

36 PrintWriter outputStream = null;
37 try
38 {
39 outputStream =
40 new PrintWriter(new FileOutputStream(fileName));
41 }
42 catch(FileNotFoundException e)
43 {
44 System.out.println("Error opening the file " + fileName);
45 System.exit(0);
46 }

47 System.out.println("Writing \"" + line + "\"");
48 System.out.println("to the file " + fileName);
49 outputStream.println(line);

50 outputStream.close();
51 System.out.println("Writing completed.");
52 }
53 }

SAMPLE DIALOGUE

I will store a line of text for you.
Enter the line of text:
May the hair on your toes grow long and curly.
Enter a file name to hold the line:
myLine.txt
There already is a file named myLine.txt
Enter a different file name:
mySaying.txt
Writing "May the hair on your toes grow long and curly."
to the file mySaying.txt
Writing completed.

If you wish, you can use fileObject
instead of fileName as the argument
to FileOutputStream.

The dialog assumes that there already is a file named myLine.txt
but that there is no file named mySaying.txt.

5640_ch10.fm Page 541 Wednesday, February 11, 2004 2:33 PM

542 Chapter 10 File I/O

Display 10.8 Some Methods in the Class File (Part 2 of 3)

public boolean exists()

Tests whether there is a file with the abstract path name.

public boolean canRead()

Tests whether the program can read from the file. Returns true if the file named by the abstract path
name exists and is readable by the program; otherwise returns false.

public boolean setReadOnly()

Sets the file represented by the abstract path name to be read only. Returns true if successful; otherwise
returns false.

public boolean canWrite()

Tests whether the program can write to the file. Returns true if the file named by the abstract path name
exists and is writable by the program; otherwise returns false.

public boolean delete()

Tries to delete the file or directory named by the abstract path name. A directory must be empty to be
removed. Returns true if it was able to delete the file or directory. Returns false if it was unable to
delete the file or directory.

public boolean createNewFile() throws IOException

Creates a new empty file named by the abstract path name, provided that a file of that name does not
already exist. Returns true if successful, and returns false otherwise.

public String getName()

Returns the last name in the abstract path name (that is, the simple file name). Returns the empty string if
the abstract path name is the empty string.

public String getPath()

Returns the abstract path name as a String value.

public boolean renameTo(File New_Name)

Renames the file represented by the abstract path name to New_Name. Returns true if successful; other-
wise returns false. New_Name can be a relative or absolute path name. This may require moving the file.
Whether or not the file can be moved is system dependent.

public boolean isFile()

Returns true if a file exists that is named by the abstract path name and the file is a normal file; otherwise
returns false. The meaning of normal is system dependent. Any file created by a Java program is guar-
anteed to be normal.

5640_ch10.fm Page 542 Wednesday, February 11, 2004 2:33 PM

Binary Files 543

Self-Test Exercises

Display 10.8 Some Methods in the Class File (Part 3 of 3)

24. Write a complete (although simple) Java program that tests whether or not the directory
(folder) containing the program also contains a file named Sally.txt. The program has
no input and the only output tells whether or not there is a file named Sally.txt.

25. Write a complete Java program that asks the user for a file name, tests whether the file
exists, and, if the file exists, asks the user whether or not it should be deleted. It then either
deletes or does not delete the file as the user requests.

Binary Files
A little more than kin, and less than kind.

William Shakespeare, Hamlet

Binary files store data in the same format that is used in the computer’s memory to
store the values of variables. For example, a value of type int is stored as the same
sequence of bytes (same sequence of zeros and ones) whether it is stored in an int vari-
able in memory or in a binary file. So, no conversion of any kind needs to be per-
formed when you store or retrieve a value in a binary file. This is why binary files can
be handled more efficiently than text files.

public boolean isDirectory()

Returns true if a directory (folder) exists that is named by the abstract path name; otherwise returns
false.

public boolean mkdir()

Makes a directory named by the abstract path name. Will not create parent directories. See mkdirs.
Returns true if successful; otherwise returns false.

public boolean mkdirs()

Makes a directory named by the abstract path name. Will create any necessary but nonexistent parent
directories. Returns true if successful; otherwise returns false. Note that if it fails, then some of the par-
ent directories may have been created.

public long length()

Returns the length in bytes of the file named by the abstract path name. If the file does not exist or the
abstract path name names a directory, then the value returned is not specified and may be anything.

10.4 ✜

5640_ch10.fm Page 543 Wednesday, February 11, 2004 2:33 PM

544 Chapter 10 File I/O

Java binary files are unlike binary files in other programming languages in that they
are portable. A binary file created by a Java program can be moved from one computer
to another and still be read by a Java program—but only by a Java program. They can-
not normally be read with a text editor or with a program written in any programming
language other than Java.

The preferred stream classes for processing binary files are ObjectInputStream and
ObjectOutputStream. Each has methods to read or write data one byte at a time. These
streams can also automatically convert numbers and characters to bytes that can be
stored in a binary file. They allow your program to be written as if the data placed in
the file, or read from the file, were not just bytes but were strings or items of any of
Java’s primitive data types, such as int, char, and double, or even objects of classes you
define. If you do not need to access your files using an editor, then the easiest and most
efficient way to read data from and write data to files is to use binary files in the way we
describe here.

We conclude this section with a discussion of how you can use ObjectOutputStream
and ObjectInputStream to write and later read objects of any class you define. This
will let your code store objects of the classes you define in binary files and later read
them back, all with the same convenience and efficiency that you get when storing
strings and primitive type data in binary files.

■ WRITING SIMPLE DATA TO A BINARY FILE

The class ObjectOutputStream is the preferred stream class for writing to a binary file.2

An object of the class ObjectOutputStream has methods to write strings and values of
any of the primitive types to a binary file. Display 10.9 shows a sample program that
writes values of type int to a binary file. Display 10.10 describes the methods used for
writing data of other types to a binary file.

Notice that almost all the code in the sample program in Display 10.9 is in a try
block. Any part of the code that does binary file I/O in the ways we are describing can
throw an IOException.

The output stream for writing to the binary file numbers.dat is created and named
with the following:

ObjectOutputStream outputStream =
 new ObjectOutputStream(new FileOutputStream("numbers.dat"));

As with text files, this is called opening the file. If the file numbers.dat does not already
exist, this statement will create an empty file named numbers.dat. If the file num-
bers.dat already exists, this statement will erase the contents of the file so that the file

2 DataOutputStream is also widely used and behaves exactly as we describe for ObjectOut-
putStream in this section. However, the techniques given in the subsections “Binary I/O of
Objects” and “Array Objects in Binary Files” only work for ObjectOutputStream; they do not
work for DataOutputStream.

opening a file

5640_ch10.fm Page 544 Wednesday, February 11, 2004 2:33 PM

Binary Files 545

starts out empty. The situation is basically the same as what you learned for text files,
except that we’re using a different class.

As is typical of Java I/O classes, the constructor for the class ObjectOutputStream
takes another I/O class object as an argument, in this case an anonymous argument of
the class FileOutputStream.

The class ObjectOutputStream does not have a method named println, as we had
with text file output and screen output. However, as shown in Display 10.9, an object of

Display 10.9 Writing to a Binary File

1 import java.io.ObjectOutputStream;
2 import java.io.FileOutputStream;
3 import java.io.IOException;

4 public class BinaryOutputDemo
5 {
6 public static void main(String[] args)
7 {
8 try
9 {

10 ObjectOutputStream outputStream =
11 new ObjectOutputStream(new FileOutputStream("numbers.dat"));

12 int i;
13 for (i = 0; i < 5; i++)
14 outputStream.writeInt(i);

15 System.out.println("Numbers written to the file numbers.dat.");
16 outputStream.close();
17 }
18 catch(IOException e)
19 {
20 System.out.println("Problem with file output.");
21 }
22 }
23 }

FILE REPRESENTATION (after program is run)

0
1
2
3
4

This is a binary file. It really contains representations of each
number as bytes, that is, zeros and ones, and is read as
bytes. You cannot read this file with your text editor.

5640_ch10.fm Page 545 Wednesday, February 11, 2004 2:33 PM

546 Chapter 10 File I/O

the class ObjectOutputStream does have a method named writeInt that can write a sin-
gle int value to a file, and it also has the other output methods described in Display
10.10.

In Display 10.9, we made it look as though the numbers in the file numbers.dat
were written one per line in a human-readable form. That is not what happens, how-
ever. There are no lines or other separators between the numbers. Instead, the numbers
are written in the file one immediately after the other, and they are encoded as a
sequence of bytes in the same way that the numbers would be encoded in the com-
puter’s main memory. These coded int values cannot be read using your editor. Real-
istically, they can be read only by another Java program.

You can use a stream from the class ObjectOutputStream to output values of any
primitive type and also to write data of the type String. Each primitive data type has a
corresponding write method in the class ObjectOutputStream. We have already men-
tioned the write methods for outputting int values. The methods for the other primi-
tive types are completely analogous to writeInt. For example, the following would
write a double value, a boolean value, and a char value to the binary file connected to
the ObjectOutputStream object outputStream:

outputStream.writeDouble(9.99);
outputStream.writeBoolean(false);
outputStream.writeChar((int)'A');

OPENING A BINARY FILE FOR OUTPUT

You create a stream of the class ObjectOutputStream and connect it to a binary file as follows:

SYNTAX:

ObjectOutputStream Output_Stream_Name =
 new ObjectOutputStream(new FileOutputStream(File_Name));

The constructor for FileOutputStream may throw a FileNotFoundException, which is a
kind of IOException. If the FileOutputStream constructor succeeds, then the constructor for
ObjectOutputStream may throw a different IOException. A single catch block for IOEx-
ception would cover all cases.

EXAMPLES:

ObjectOutputStream myOutputStream =
 new ObjectOutputStream(new FileOutputStream("mydata.dat"));

After opening the file, you can use the methods of the class ObjectOutputStream (Display
10.10) to write to the file.

writeInt

writeChar

5640_ch10.fm Page 546 Wednesday, February 11, 2004 2:33 PM

Binary Files 547

Display 10.10 Some Methods in the Class ObjectOutputStream (Part 1 of 2)

ObjectOutputStream and FileOutputStream are in the java.io package.

public ObjectOutputStream(OutputStream streamObject)

There is no constructor that takes a file name as an argument. If you want to create a stream using a file
name, you use

new ObjectOutputStream(new FileOutputStream(File_Name))

This creates a blank file. If there already is a file named File_Name, then the old contents of the file are lost.

If you want to create a stream using an object of the class File, you use

new ObjectOutputStream(new FileOutputStream(File_Object))

The constructor for FileOutputStream may throw a FileNotFoundException, which is a kind of
IOException. If the FileOutputStream constructor succeeds, then the constructor for ObjectOut-
putStream may throw a different IOException.

public void writeInt(int n) throws IOException

Writes the int value n to the output stream.

public void writeShort(short n) throws IOException

Writes the short value n to the output stream.

public void writeLong(long n) throws IOException

Writes the long value n to the output stream.

public void writeDouble(double x) throws IOException

Writes the double value x to the output stream.

public void writeFloat(float x) throws IOException

Writes the float value x to the output stream.

public void writeChar(int n) throws IOException

Writes the char value n to the output stream. Note that it expects its argument to be an int value. How-
ever, if you simply use the char value, then Java will automatically type cast it to an int value. The fol-
lowing are equivalent:

outputStream.writeChar((int)'A');

and

outputStream.writeChar('A');

public void writeBoolean(boolean b) throws IOException

Writes the boolean value b to the output stream.

5640_ch10.fm Page 547 Wednesday, February 11, 2004 2:33 PM

548 Chapter 10 File I/O

Display 10.10 Some Methods in the Class ObjectOutputStream (Part 2 of 2)

The method writeChar has one possibly surprising property: It expects its argument
to be of type int. So if you start with a value of type char, the char value can be type
cast to an int before it is given to the method writeChar. For example, to output the
contents of a char variable named symbol, you can use

outputStream.writeChar((int)symbol);

In actual fact, you do not need to write in the type cast to an int, because Java auto-
matically performs a type cast from a char value to an int value for you. So, the follow-
ing is equivalent to the above invocation of writeChar:

outputStream.writeChar(symbol);

To output a value of type String, you use the method writeUTF. For example, if
outputStream is a stream of type ObjectOutputStream, the following will write the
string "Hello friend." to the file connected to that stream:

outputStream.writeUTF("Hello friend.");

You may write output of different types to the same file. So, you may write a combi-
nation of, for example, int, double, and String values. However, mixing types in a file
does require special care to make it possible to read them back out of the file. To read
them back, you need to know the order in which the various types appear in the file,
because, as you will see, a program that reads from the file will use a different method
to read data of each different type.

Note that, as illustrated in Display 10.9 and as you will see shortly, you close a
binary output or input stream in the same way that you close a stream connected to a
text file.

public void writeUTF(String aString) throws IOException

Writes the String value aString to the output stream. UTF refers to a particular method of encoding the
string. To read the string back from the file, you should use the method readUTF of the class ObjectIn-
putStream.

public void writeObject(Object anObject) throws IOException

Writes its argument to the output stream. The object argument should be an object of a serializable class,
a concept discussed later in this chapter. Throws various IOExceptions.

public void close() throws IOException

Closes the stream’s connection to a file. This method calls flush before closing the file.

public void flush() throws IOException

Flushes the output stream. This forces an actual physical write to the file of any data that has been buffered
and not yet physically written to the file. Normally, you should not need to invoke flush.

writeUTF
for strings

closing a binary
file

5640_ch10.fm Page 548 Wednesday, February 11, 2004 2:33 PM

Binary Files 549

Self-Test Exercises

■ UTF AND writeUTF

Recall that Java uses the Unicode character set, a set of characters that includes many
characters used in languages whose character sets are different from English. Readers of
this book are undoubtedly using editors and operating systems that use the ASCII
character set, which is the character set normally used for English and for our Java pro-
grams. The ASCII character set is a subset of the Unicode character set, so the Unicode
character set has a lot of characters you probably do not need. There is a standard way
of encoding all the Unicode characters, but for English-speaking countries, it is not a
very efficient coding scheme. The UTF coding scheme is an alternative scheme that
still codes all Unicode characters but that favors the ASCII character set. The UTF cod-
ing method gives short, efficient codes for the ASCII characters. The price is that it
gives long, inefficient codes to the other Unicode characters. However, because you
probably do not use the other Unicode characters, this is a very favorable trade-off. The
method writeUTF uses the UTF coding method to write strings to a binary file.

The method writeInt writes integers into a file using the same number of bytes—
that is, the same number of zeros and ones—to store any integer. Similarly, the method
writeLong uses the same number of bytes to store each value of type long. (But the
methods writeInt and writeLong use a different number of bytes from each other.) The
situation is the same for all the other write methods that write primitive types to binary
files. However, the method writeUTF uses differing numbers of bytes to store different
strings in a file. Longer strings require more bytes than shorter strings. This can present
a problem to Java, because there are no separators between data items in a binary file.
The way that Java manages to make this work is by writing some extra information at
the start of each string. This extra information tells how many bytes are used to write the
string, so readUTF knows how many bytes to read and convert. (The method readUTF
will be discussed a little later in this chapter, but, as you may have already guessed, it
reads a String value that was written using the UTF coding method.)

The situation with writeUTF is even a little more complicated than what we dis-
cussed in the previous paragraph. Notice that we said that the information at the start
of the string code in the file tells how many bytes to read, not how many characters are in
the string. These two figures are not the same. With the UTF way of encoding, different
characters are encoded in different numbers of bytes. However, all the ASCII characters
are stored in just one byte, and you are undoubtedly using only ASCII characters, so
this difference is more theoretical than real to you now.

26. How do you open the binary file bindata.dat so that it is connected to an output stream
of type ObjectOutputStream that is named outputThisWay?

27. Give two statements that will write the values of the two double variables v1 and v2 to the
file bindata.dat. Use the stream outputThisWay that you created as the answer to exer-
cise 26.

5640_ch10.fm Page 549 Wednesday, February 11, 2004 2:33 PM

550 Chapter 10 File I/O

28. Give a statement that will write the string value "Hello" to the file bindata.dat. Use the
stream outputThisWay that you created as the answer to exercise 26.

29. Give a statement that will close the stream outputThisWay created as the answer to exer-
cise 26.

■ READING SIMPLE DATA FROM A BINARY FILE

The stream class ObjectInputStream is used to read from a file that has been written to
using ObjectOutputStream. Display 10.11 gives some of the most commonly used
methods for this class. If you compare that table with the methods for ObjectOutput-
Stream given in Display 10.10, you will see that each output method in ObjectOutput-
Stream has a corresponding input method in ObjectInputStream. For example, if you
write an integer to a file using the method writeInt of ObjectOutputStream, then you
can read that integer back with the method readInt of ObjectInputStream. If you
write a number to a file using the method writeDouble of ObjectOutputStream, then
you can read that number back with the method readDouble of ObjectInputStream,
and so forth. Display 10.12 gives an example of using readInt in this way.

Display 10.11 Some Methods in the Class ObjectInputStream (Part 1 of 3)

The classes ObjectInputStream and FileInputStream are in the java.io package.

public ObjectInputStream(InputStream streamObject)

There is no constructor that takes a file name as an argument. If you want to create a stream using a file
name, you use

new ObjectInputStream(new FileInputStream(File_Name))

Alternatively, you can use an object of the class File in place of the File_Name, as follows:

new ObjectInputStream(new FileInputStream(File_Object))

The constructor for FileInputStream may throw a FileNotFoundException, which is a kind of
IOException. If the FileInputStream constructor succeeds, then the constructor for ObjectInput-
Stream may throw a different IOException.

public int readInt() throws IOException

Reads an int value from the input stream and returns that int value. If readInt tries to read a value
from the file and that value was not written using the method writeInt of the class ObjectOutput-
Stream (or written in some equivalent way), then problems will occur. If an attempt is made to read
beyond the end of the file, an EOFException is thrown.

public int readShort() throws IOException

Reads a short value from the input stream and returns that short value. If readShort tries to read a
value from the file and that value was not written using the method writeShort of the class
ObjectOutputStream (or written in some equivalent way), then problems will occur. If an attempt is
made to read beyond the end of the file, an EOFException is thrown.

5640_ch10.fm Page 550 Wednesday, February 11, 2004 2:33 PM

Binary Files 551

Display 10.11 Some Methods in the Class ObjectInputStream (Part 2 of 3)

public long readLong() throws IOException

Reads a long value from the input stream and returns that long value. If readLong tries to read a value
from the file and that value was not written using the method writeLong of the class ObjectOutput-
Stream (or written in some equivalent way), then problems will occur. If an attempt is made to read
beyond the end of the file, an EOFException is thrown.

public double readDouble() throws IOException

Reads a double value from the input stream and returns that double value. If readDouble tries to read
a value from the file and that value was not written using the method writeDouble of the class
ObjectOutputStream (or written in some equivalent way), then problems will occur. If an attempt is
made to read beyond the end of the file, an EOFException is thrown.

public float readFloat() throws IOException

Reads a float value from the input stream and returns that float value. If readFloat tries to read a
value from the file and that value was not written using the method writeFloat of the class
ObjectOutputStream (or written in some equivalent way), then problems will occur. If an attempt is
made to read beyond the end of the file, an EOFException is thrown.

public char readChar() throws IOException

Reads a char value from the input stream and returns that char value. If readChar tries to read a value
from the file and that value was not written using the method writeChar of the class ObjectOutput-
Stream (or written in some equivalent way), then problems will occur. If an attempt is made to read
beyond the end of the file, an EOFException is thrown.

public boolean readBoolean() throws IOException

Reads a boolean value from the input stream and returns that boolean value. If readBoolean tries to
read a value from the file and that value was not written using the method writeBoolean of the class
ObjectOutputStream (or written in some equivalent way), then problems will occur. If an attempt is
made to read beyond the end of the file, an EOFException is thrown.

public String readUTF() throws IOException

Reads a String value from the input stream and returns that String value. If readUTF tries to read a
value from the file and that value was not written using the method writeUTF of the class ObjectOut-
putStream (or written in some equivalent way), then problems will occur. If an attempt is made to read
beyond the end of the file, an EOFException is thrown.

Object readObject() throws ClassNotFoundException, IOException

Reads an object from the input stream. The object read should have been written using writeObject of
the class ObjectOutputStream. Throws a ClassNotFoundException if the class of a serialized object
cannot be found. If an attempt is made to read beyond the end of the file, an EOFException is thrown.
May throw various other IOExceptions.

public int skipBytes(int n) throws IOException

Skips n bytes.

5640_ch10.fm Page 551 Wednesday, February 11, 2004 2:33 PM

552 Chapter 10 File I/O

Display 10.11 Some Methods in the Class ObjectInputStream (Part 3 of 3)

The input stream for reading from the binary file numbers.dat is opened as follows:

ObjectInputStream inputStream =
 new ObjectInputStream(new FileInputStream("numbers.dat"));

Note that this is identical to how we opened a file using ObjectOutputStream in Dis-
play 10.9, except that here we’ve used the classes ObjectInputStream and FileInput-
Stream instead of ObjectOutputStream and FileOutputStream.

ObjectInputStream allows you to read input values of different types from the same
file. So, you may read a combination of, for example, int values, double values, and
String values. However, if the next data item in the file is not of the type expected by
the reading method, the result is likely to be a mess. For example, if your program writes
an integer using writeInt, then any program that reads that integer should read it using
readInt. If you instead use readLong or readDouble, your program will misbehave.

Note that, as illustrated in Display 10.12, you close a binary input stream in the
same way that you close all the other I/O streams we have seen.

public void close() throws IOException

Closes the stream’s connection to a file.

OPENING A BINARY FILE FOR READING

You create a stream of the class ObjectInputStream and connect it to a binary file as follows:

SYNTAX:

ObjectInputStream Input_Stream_Name =
 new ObjectInputStream(new FileInputStream(File_Name));

The constructor for FileInputStream may throw a FileNotFoundException, which is a kind
of IOException. If the FileInputStream constructor succeeds, then the constructor for
ObjectInputStream may throw a different IOException.

EXAMPLES:

 ObjectInputStream inputFile =
 new ObjectInputStream(new FileInputStream("somefile.dat"));

 After this, you can use the methods in Display 10.11 to read from the file.

reading multiple
types

closing a binary
file

5640_ch10.fm Page 552 Wednesday, February 11, 2004 2:33 PM

Binary Files 553

Display 10.12 Reading from a Binary File

1 import java.io.ObjectInputStream;
2 import java.io.FileInputStream;
3 import java.io.IOException;
4 import java.io.FileNotFoundException;

5 public class BinaryInputDemo
6 {
7 public static void main(String[] args)
8 {
9 try

10 {
11 ObjectInputStream inputStream =
12 new ObjectInputStream(new FileInputStream("numbers.dat"));

13 System.out.println("Reading the file numbers.dat.");
14 int n1 = inputStream.readInt();
15 int n2 = inputStream.readInt();

16 System.out.println("Numbers read from file:");
17 System.out.println(n1);
18 System.out.println(n2);
19 inputStream.close();
20 }
21 catch(FileNotFoundException e)
22 {
23 System.out.println("Cannot find file numbers.dat.");
24 }
25 catch(IOException e)
26 {
27 System.out.println("Problems with input from numbers.dat.");
28 }
29 System.out.println("End of program.");
30 }
31 }

SAMPLE DIALOGUE

Reading the file numbers.dat.
Numbers read from file:
0
1
End of program.

Assumes the program in Display 10.9 was run
to create the file numbers.dat.

5640_ch10.fm Page 553 Wednesday, February 11, 2004 2:33 PM

554 Chapter 10 File I/O

Pitfall

Self-Test Exercises

30. Write code to open the binary file named someStuff and connect it to a ObjectInput-
Stream object named inputThing so it is ready for reading.

31. Give a statement that will read a number of type double from the file someStuff and
place the value in a variable named number. Use the stream inputThing that you created
in exercise 30. (Assume the first thing written to the file was written using the method
writeDouble of the class ObjectOutputStream and assume number is of type double.)

32. Give a statement that will close the stream inputThing created in exercise 30.

33. Can one program write a number to a file using writeInt and then have another program
read that number using readLong? Can a program read that number using readDouble?

34. Can you use readUTF to read a string from a text file?

■ CHECKING FOR THE END OF A BINARY FILE

All of the ObjectInputStream methods that read from a binary file will throw an
EOFException when they try to read beyond the end of a file. So, your code can test for
the end of a binary file by catching an EOFException as illustrated in Display 10.13.

In Display 10.13 the reading is placed in an “infinite loop” through the use of true
as the Boolean expression in the while loop. The loop is not really infinite, because
when the end of the file is reached, an exception is thrown, and that ends the entire try
block and passes control to the catch block.

CHECKING FOR THE END OF A FILE IN THE WRONG WAY

Different file-reading methods check for the end of a file in different ways. If you test for the end
of a file in the wrong way, one of two things will probably happen: Your program will either go
into an unintended infinite loop or terminate abnormally.

EOFException

If your program is reading from a binary file using any of the methods listed in Display 10.11 for
the class ObjectInputStream, and your program attempts to read beyond the end of the file,
then an EOFException is thrown. This can be used to end a loop that reads all the data in a file.

The class EOFException is a derived class of the class IOException. So, every exception of
type EOFException is also of type IOException.

EOF-
Exception

5640_ch10.fm Page 554 Wednesday, February 11, 2004 2:33 PM

Binary Files 555

Display 10.13 Using EOFException (Part 1 of 2)

1 import java.io.ObjectInputStream;
2 import java.io.FileInputStream;
3 import java.io.EOFException;
4 import java.io.IOException;
5 import java.io.FileNotFoundException;

6 public class EOFDemo
7 {
8 public static void main(String[] args)
9 {

10 try
11 {
12 ObjectInputStream inputStream =
13 new ObjectInputStream(new FileInputStream("numbers.dat"));
14 int number;
15 System.out.println("Reading numbers in numbers.dat");
16 try
17 {
18 while (true)
19 {
20 number = inputStream.readInt();
21 System.out.println(number);
22 }
23 }
24 catch(EOFException e)
25 {
26 System.out.println("No more numbers in the file.");
27 }
28 inputStream.close();
29 }
30 catch(FileNotFoundException e)
31 {
32 System.out.println("Cannot find file numbers.dat.");
33 }
34 catch(IOException e)
35 {
36 System.out.println("Problem with input from file numbers.dat.");
37 }
38 }
39 }

5640_ch10.fm Page 555 Wednesday, February 11, 2004 2:33 PM

556 Chapter 10 File I/O

Self-Test Exercises

For the classes discussed in this book, the following rules apply: If your program is reading from a
binary file, then an EOFException will be thrown when the reading goes beyond the end of the
file. If your program is reading from a text file, then some special value, such as null, will be
returned when your program attempts to read beyond the end of the file, and no EOFException
will be thrown.

35. When opening a binary file for output in the ways discussed in this chapter, might an
exception be thrown? What kind of exception? When opening a binary file for input in the
ways discussed in this chapter, might an exception be thrown? What kind of exception?

36. Suppose a binary file contains three numbers written to the file with the method write-
Double of the class ObjectOutputStream. Suppose further that your program reads all
three numbers with three invocations of the method readDouble of the class ObjectIn-
putStream. When will an EOFException be thrown? Right after reading the third num-
ber? When your program tries to read a fourth number? Some other time?

37. The following appears in the program in Display 10.13:

try
{
 while (true)
 {
 number = inputStream.readInt();
 System.out.println(number);
 }
}
catch(EOFException e)
{

Display 10.13 Using EOFException (Part 2 of 2)

SAMPLE DIALOGUE

Reading numbers in numbers.dat
0
1
2
3
4
No more numbers in the file.

Assumes the program in Display 10.9
was run to create the file
numbers.dat.

5640_ch10.fm Page 556 Wednesday, February 11, 2004 2:33 PM

Binary Files 557

 System.out.println("No more numbers in the file.");

}

Why isn’t this an infinite loop?

■ BINARY I/O OF OBJECTS

You can output objects of classes you define as easily as you output

int

 values using

writeInt

, and you can later read the objects back into your program as easily as you read

int

 values with the method

readInt

. For you to be able to do this, the class of objects
that your code is writing and reading must implement the

Serializable

 interface.

We will discuss interfaces in general in Chapter 13. However, the

Serializable

interface is particularly easy to use and requires no knowledge of interfaces. All you
need to do to make a class implement the

Serializable

 interface is add the two words

implements

Serializable

 to the heading of the class definition, as in the following
example:

public class Person implements Serializable
{

The

Serializable

 interface is in the same

java.io

 package that contains all the I/O
classes we have discussed in this chapter. For example, in Display 10.14 we define a toy
class named

SomeClass

 that implements the

Serializable

 interface. We will explain the
effect of the

Serializable

 interface a bit later in this chapter, but first let’s see how you
do binary file I/O with a serializable class such as this class

SomeClass

 in Display 10.14.

Display 10.15 illustrates how class objects can be written to and read from a binary
file. To write an object of a class such as

SomeClass

 to a binary file, you simply use the
method

writeObject

 of the class

ObjectOutputStream

. You use

writeObject

 in the
same way that you use the other methods of the class

ObjectOutputStream

, such as

writeInt

, but you use an object as the argument.

If an object is written to a file with

writeObject

, then it can be read back out of the
file with

readObject

 of the stream class

ObjectInputStream

, as also illustrated in Dis-
play 10.14. The method

readObject

 returns its value as an object of type

Object

. If
you want to use the values returned by

readObject

 as an object of a class like

Some-

Class

, you must do a type cast, as shown in Display 10.15.

■ THE

Serializable INTERFACE

A class that implements the

Serializable

 interface is said to be a serializable

 class. To
use objects of a class with

writeObject

 and

readObject

, that class must be serializable.
But, to make the class serializable, we change nothing in the class. All we do is add the
phrase

implements

Serializable

. This phrase tells the run-time system that it is okay
to treat objects of the class in a particular way when doing file I/O. If a class is serializable,

Serializable
interface

writeObject

readObject

serializable

5640_ch10.fm Page 557 Tuesday, February 17, 2004 5:34 PM

558 Chapter 10 File I/O

Display 10.14 A Serializable Class

1 import java.io.Serializable;

2 public class SomeClass implements Serializable
3 {
4 private int number;
5 private char letter;

6 public SomeClass()
7 {
8 number = 0;
9 letter = 'A';

10 }

11 public SomeClass(int theNumber, char theLetter)
12 {
13 number = theNumber;
14 letter = theLetter;
15 }

16 public String toString()
17 {
18 return "Number = " + number
19 + " Letter = " + letter;
20 }

21 }

Display 10.15 Binary File I/O of Objects (Part 1 of 3)

1 import java.io.ObjectOutputStream;
2 import java.io.FileOutputStream;
1 import java.io.ObjectInputStream;
2 import java.io.FileInputStream;
3 import java.io.IOException;
4 import java.io.FileNotFoundException;

5 /**
6 Demonstrates binary file I/O of serializable class objects.
7 */
8 public class ObjectIODemo
9 {

5640_ch10.fm Page 558 Wednesday, February 11, 2004 2:33 PM

Binary Files 559

Display 10.15 Binary File I/O of Objects (Part 2 of 3)

10 public static void main(String[] args)
11 {

12 try
13 {
14 ObjectOutputStream outputStream =
15 new ObjectOutputStream(new FileOutputStream("datafile"));

16 SomeClass oneObject = new SomeClass(1, 'A');
17 SomeClass anotherObject = new SomeClass(42, 'Z');

18 outputStream.writeObject(oneObject);
19 outputStream.writeObject(anotherObject);

20 outputStream.close();

21 System.out.println("Data sent to file.");
22 }
23 catch(IOException e)
24 {
25 System.out.println("Problem with file output.");
26 }

27 System.out.println(
28 "Now let's reopen the file and display the data.");

29 try
30 {
31 ObjectInputStream inputStream =
32 new ObjectInputStream(new FileInputStream("datafile"));

33 SomeClass readOne = (SomeClass)inputStream.readObject();
34 SomeClass readTwo = (SomeClass)inputStream.readObject();

35 System.out.println("The following were read from the file:");
36 System.out.println(readOne);
37 System.out.println(readTwo);
38 }
39 catch(FileNotFoundException e)
40 {
41 System.out.println("Cannot find datafile.");
42 }
43 catch(ClassNotFoundException e)
44 {

Notice the type casts.

5640_ch10.fm Page 559 Wednesday, February 11, 2004 2:33 PM

560 Chapter 10 File I/O

Java assigns a serial number to each object of the class that it writes to a stream of type
ObjectOutputStream. If the same object is written to the stream more than once, then
after the first time, Java writes only the serial number for the object and not a full
description of the object’s data. This makes file I/O more efficient and makes the files
smaller. When read back out with a stream of type ObjectInputStream, duplicate serial
numbers are returned as references to the same object. Note that this means that if two
variables contain references to the same object and you write the objects to the file and
later read them from the file, then the two objects that are read will again be references
to the same object. So, nothing in the structure of your object data is lost when you
write the objects to the file and later read them back.

When a serializable class has instance variables of a class type, then the classes for the
instance variables must also be serializable, and so on for all levels of class instance vari-
ables within classes. So, a class is not serializable unless the classes for all instance vari-
ables are also serializable.

Why aren’t all classes made serializable? For security reasons. The serial number sys-
tem makes it easier for programmers to get access to the object data written to second-
ary storage. Also, for some classes it may not make sense to write objects to secondary
storage, since they would be meaningless when read out again later. For example, if
the object contains system-dependent data, the data may be meaningless when later
read out.

Display 10.15 Binary File I/O of Objects (Part 3 of 3)

45 System.out.println("Problems with file input.");
46 }
47 catch(IOException e)
48 {
49 System.out.println("Problems with file input.");
50 }

51 System.out.println("End of program.");
52 }
53 }

SAMPLE DIALOGUE

Data sent to file.
Now let's reopen the file and display the data.
The following were read from the file:
Number = 1 Letter = A
Number = 42 Letter = Z
End of program.

class instance
variables

5640_ch10.fm Page 560 Wednesday, February 11, 2004 2:33 PM

Binary Files 561

Pitfall

MIXING CLASS TYPES IN THE SAME FILE

The best way to write and read objects using ObjectOutputStream and ObjectInputStream
is to store only data of one class type in any one file. If you store objects of multiple class types or
even objects of only one class type mixed in with primitive type data, it has been our experience
that the system can get confused and you could lose data.

■ ARRAY OBJECTS IN BINARY FILES

An array is an object and hence a suitable argument for writeObject. An entire array
can be saved to a binary file using writeObject and later read using readObject. When
doing so, if the array has a base type that is a class, then the class must be serializable.
This means that if you store all your data for one serializable class in a single array, then
you can output all your data to a binary file with one invocation of writeObject.

This way of storing an array in a binary file is illustrated in Display 10.16. Note that
the base class type, SomeClass, is serializable. Also, notice the type cast that uses the
array type SomeClass[]. Since readObject returns its value as an object of type Object,
it must be type cast to the correct array type.

Display 10.16 File I/O of an Array Object (Part 1 of 3)

1 import java.io.ObjectOutputStream;
2 import java.io.FileOutputStream;
3 import java.io.ObjectInputStream;
4 import java.io.FileInputStream;
5 import java.io.IOException;
6 import java.io.FileNotFoundException;

7 public class ArrayIODemo
8 {

9 public static void main(String[] args)
10 {
11 SomeClass[] a = new SomeClass[2];
12 a[0] = new SomeClass(1, 'A');
13 a[1] = new SomeClass(2, 'B');

14 try
15 {
16 ObjectOutputStream outputStream =
17 new ObjectOutputStream(new FileOutputStream("arrayfile"));

5640_ch10.fm Page 561 Wednesday, February 11, 2004 2:33 PM

562 Chapter 10 File I/O

Display 10.16 File I/O of an Array Object (Part 2 of 3)

18 outputStream.writeObject(a);
19 outputStream.close();
20 }
21 catch(IOException e)
22 {
23 System.out.println("Error writing to file.");
24 System.exit(0);
25 }

26 System.out.println(
27 "Array written to file arrayfile.");

28 System.out.println(
29 "Now let's reopen the file and display the array.");

30 SomeClass[] b = null;

31 try
32 {
33 ObjectInputStream inputStream =
34 new ObjectInputStream(new FileInputStream("arrayfile"));
35 b = (SomeClass[])inputStream.readObject();
36 inputStream.close();
37 }
38 catch(FileNotFoundException e)
39 {
40 System.out.println("Cannot find file arrayfile.");
41 System.exit(0);
42 }
43 catch(ClassNotFoundException e)
44 {
45 System.out.println("Problems with file input.");
46 System.exit(0);
47 }
48 catch(IOException e)
49 {
50 System.out.println("Problems with file input.");
51 System.exit(0);
52 }

53 System.out.println(
54 "The following array elements were read from the file:");
55 int i;
56 for (i = 0; i < b.length; i++)
57 System.out.println(b[i]);

Notice the type cast.

5640_ch10.fm Page 562 Wednesday, February 11, 2004 2:33 PM

Random Access to Binary Files 563

Self-Test Exercises

38. How do you make a class implement the Serializable interface?

39. What import statement do you need to be able to use the Serializable interface?

40. What is the return type for the method readObject of the class ObjectInputStream?

41. Is an array of type Object?

Random Access to Binary Files
Any time, any where.

Common response to a challenge for a confrontation

The streams for sequential access to files, which we discussed in the previous sections
of this chapter, are the ones most often used for file access in Java. However, some
applications that require very rapid access to records in very large databases require
some sort of random access to particular parts of a file. Such applications might best be
done with specialized database software. But, perhaps you are given the job of writing
such a package in Java, or perhaps you are just curious about how such things are done
in Java. Java does provide for random access to files so that your program can both read
from and write to random locations in a file. In this section we will describe simple
uses of random access to files.

Display 10.16 File I/O of an Array Object (Part 3 of 3)

58 System.out.println("End of program.");
59 }
60 }

SAMPLE DIALOGUE

Array written to file arrayfile.
Now let's reopen the file and display the array.
The following array elements were read from the file:
Number = 1 Letter = A
Number = 2 Letter = B
End of program.

10.5 ✜

5640_ch10.fm Page 563 Wednesday, February 11, 2004 2:33 PM

564 Chapter 10 File I/O

■ READING AND WRITING TO THE SAME FILE

If you want random access to both read and write to a file in Java, you use the stream
class RandomAccessFile, which is in the java.io package like all other file I/O classes.

A random access file consists of a sequence of numbered bytes. There is a kind of
marker called the file pointer that is always positioned at one of these bytes. All reads
and writes take place starting at the location of the file pointer. You can move the file
pointer to a new location with the method seek.

Although a random access file is byte oriented, there are methods to allow for read-
ing or writing values of the primitive types and of string values to a random access file.
In fact, these are the same methods as those we already used for sequential access files,
as previously discussed. A RandomAccessFile stream has methods writeInt, write-
Double, writeUTF, and so forth as well as methods readInt, readDouble, readUTF, and
so forth. However, the class RandomAccessFile does not have the methods writeOb-
ject or readObject. The most important methods of the class RandomAccessFile are
given in Display 10.17. A demonstration program for random access files is given in
Display 10.18.

Display 10.17 Some Methods of the Class RandomAccessFile (Part 1 of 3)

The class RandomAccessFile is in the java.io package.

public RandomAccessFile(String fileName, String mode)

public RandomAccessFile(File fileObject, String mode)

Opens the file, does not delete data already in the file, but does position the file pointer at the first (zeroth)
location.

The mode must be one of the following:

"r" Open for reading only.

"rw" Open for reading and writing.

"rws" Same as "rw", and also requires that every update to the file's content or metadata be written
synchronously to the underlying storage device.

"rwd" Same as "rw", and also requires that every update to the file's content be written synchro-
nously to the underlying storage device.

"rws" and "rwd" are not covered in this book.

public long getFilePointer() throws IOException

Returns the current location of the file pointer. Locations are numbered starting with 0.

public void seek(long location) throws IOException

Moves the file pointer to the specified location.

public long length() throws IOException

Returns the length of the file.

5640_ch10.fm Page 564 Wednesday, February 11, 2004 2:33 PM

Random Access to Binary Files 565

Display 10.17 Some Methods of the Class RandomAccessFile (Part 2 of 3)

public void setLength(long newLength) throws IOException

Sets the length of this file.

If the present length of the file as returned by the length method is greater than the newLength argu-
ment, then the file will be truncated. In this case, if the file pointer location as returned by the getFile-
Pointer method is greater than newLength, then after this method returns, the file pointer location will
be equal to newLength.

If the present length of the file as returned by the length method is smaller than newLength, then the
file will be extended. In this case, the contents of the extended portion of the file are not defined.

public void close() throws IOException

Closes the stream’s connection to a file.

public void write(int b) throws IOException

Writes the specified byte to the file.

public void write(byte[] a) throws IOException

Writes a.length bytes from the specified byte array to the file.

public final void writeByte(byte b) throws IOException

Writes the byte b to the file.

public final void writeShort(short n) throws IOException

Writes the short n to the file.

public final void writeInt(int n) throws IOException

Writes the int n to the file.

public final void writeLong(long n) throws IOException

Writes the long n to the file.

public final void writeDouble(double d) throws IOException

Writes the double d to the file.

public final void writeFloat(float f) throws IOException

Writes the float f to the file.

public final void writeChar(char c) throws IOException

Writes the char c to the file.

public final void writeBoolean(boolean b) throws IOException

Writes the boolean b to the file.

5640_ch10.fm Page 565 Wednesday, February 11, 2004 2:33 PM

566 Chapter 10 File I/O

Display 10.17 Some Methods of the RandomAccessFile (Part 3 of 3)

public final void writeUTF(String s) throws IOException

Writes the String s to the file.

public int read() throws IOException

Reads a byte of data from the file and returns it as an integer in the range 0 to 255.

public int read(byte[] a) throws IOException

Reads a.length bytes of data from the file into the array of bytes a. Returns the number of bytes read or
-1 if the end of the file is encountered.

public final byte readByte() throws IOException

Reads a byte value from the file and returns that value. If an attempt is made to read beyond the end of
the file, an EOFException is thrown.

public final short readShort() throws IOException

Reads a short value from the file and returns that value. If an attempt is made to read beyond the end of
the file, an EOFException is thrown.

public final int readInt() throws IOException

Reads an int value from the file and returns that value. If an attempt is made to read beyond the end of
the file, an EOFException is thrown.

public final long readLong() throws IOException

Reads a long value from the file and returns that value. If an attempt is made to read beyond the end of
the file, an EOFException is thrown.

public final double readDouble() throws IOException

Reads a double value from the file and returns that value. If an attempt is made to read beyond the end
of the file, an EOFException is thrown.

public final float readFloat() throws IOException

Reads a float value from the file and returns that value. If an attempt is made to read beyond the end of
the file, an EOFException is thrown.

public final char readChar() throws IOException

Reads a char value from the file and returns that value. If an attempt is made to read beyond the end of
the file, an EOFException is thrown.

public final boolean readBoolean() throws IOException

Reads a boolean value from the file and returns that value. If an attempt is made to read beyond the end
of the file, an EOFException is thrown.

public final String readUTF() throws IOException

Reads a String value from the file and returns that value. If an attempt is made to read beyond the end
of the file, an EOFException is thrown.

5640_ch10.fm Page 566 Wednesday, February 11, 2004 2:33 PM

Random Access to Binary Files 567

Display 10.18 Random Access to a File (Part 1 of 2)

1 import java.io.RandomAccessFile;
2 import java.io.IOException;
3 import java.io.FileNotFoundException;

4 public class RandomAccessDemo
5 {
6 public static void main(String[] args)
7 {
8 try
9 {

10 RandomAccessFile ioStream =
11 new RandomAccessFile("bytedata", "rw");

12 System.out.println("Writing 3 bytes to the file bytedata.");
13 ioStream.writeByte(1);
14 ioStream.writeByte(2);
15 ioStream.writeByte(3);
16 System.out.println("The length of the file is now = "
17 + ioStream.length());
18 System.out.println("The file pointer location is "
19 + ioStream.getFilePointer());

20 System.out.println("Moving the file pointer to location 1.");
21 ioStream.seek(1);
22 byte oneByte = ioStream.readByte();
23 System.out.println("The value at location 1 is " + oneByte);
24 oneByte = ioStream.readByte();
25 System.out.println("The value at the next location is "
26 + oneByte);

27 System.out.println("Now we move the file pointer back to");
28 System.out.println("location 1, and change the byte.");
29 ioStream.seek(1);
30 ioStream.writeByte(9);
31 ioStream.seek(1);
32 oneByte = ioStream.readByte();
33 System.out.println("The value at location 1 is now " + oneByte);

34 System.out.println("Now we go to the end of the file");
35 System.out.println("and write a double.");
36 ioStream.seek(ioStream.length());
37 ioStream.writeDouble(41.99);
38 System.out.println("The length of the file is now = "
39 + ioStream.length());

5640_ch10.fm Page 567 Wednesday, February 11, 2004 2:33 PM

568 Chapter 10 File I/O

The constructor for RandomAccessFile takes either a string name for the file or an
object of the class File as its first argument. The second argument must be one of the
four strings "rw", "r", and two modes we will not discuss, "rws" and "rwd". The string
"rw" means your code can both read and write to the file after it is open. The string "r"
means your code can read from the file but cannot write to the file.

Display 10.18 Random Access to a File (Part 2 of 2)

40 System.out.println("Returning to location 3,");
41 System.out.println("where we wrote the double.");
42 ioStream.seek(3);
43 double oneDouble = ioStream.readDouble();
44 System.out.println("The double value at location 3 is "
45 + oneDouble);

46 ioStream.close();
47 }
48 catch(FileNotFoundException e)
49 {
50 System.out.println("Problem opening file.");
51 }
52 catch(IOException e)
53 {
54 System.out.println("Problems with file I/O.");
55 }
56 System.out.println("End of program.");
57 }
58 }

SAMPLE DIALOGUE

Writing 3 bytes to the file bytedata.
The length of the file is now = 3
The file pointer location is 3
Moving the file pointer to location 1.
The value at location 1 is 2
The value at the next location is 3
Now we move the file pointer back to
location 1, and change the byte.
The value at location 1 is now 9
Now we go to the end of the file
and write a double.
The length of the file is now = 11
Returning to location 3,
where we wrote the double.
The double value at location 3 is 41.99
End of program.

The location of readDouble must be
a location where writeDouble
wrote to the file.

The dialog assumes the file bytedata
did not exist before the program was run.

Byte locations are numbered starting with zero.

Three 1-byte values and one double
value that uses 8 bytes = 11 bytes total.

opening a file

5640_ch10.fm Page 568 Wednesday, February 11, 2004 2:33 PM

Chapter Summary 569

Self-Test Exercises

Pitfall

If the file already exists, then when it is opened, the length is not reset to 0, but the
file pointer will be positioned at the start of the file, which is what you would expect at
least for "r". If the length of the file is not what you want, you can change it with the
method setLength. In particular, you can use setLength to empty the file.

A RandomAccessFile NEED NOT START EMPTY

If a file already exists, then when it is opened with RandomAccessFile, the length is not reset to 0,
but the file pointer will be positioned at the start of the file. So, old data in the file is not lost and the
file pointer is set for the most likely position for reading, not the most likely position for writing.

42. If you run the program in Display 10.18 a second time, will the output be the same?

43. How can you modify the program in Display 10.18 so the file always starts out empty?

■ Files that are considered to be strings of characters and that look like characters to
your program and your editor are called text files. Files whose contents must be han-
dled as strings of binary digits are called binary files.

■ You can use the class PrintWriter to write to a text file and can use the class Buff-
eredReader to read from a text file.

■ The class File can be used to check whether there is a file with a given name. It can
also check whether your program is allowed to read the file and/or allowed to write
to the file.

■ Your program can use the class ObjectOutputStream to write to a binary file and can
use the class ObjectInputStream to read from a binary file.

■ Your program can use the method writeObject of the class ObjectOutputStream to
write class objects to a binary file. The objects can be read back with the method
readObject of the class ObjectInputStream.

■ To use the method writeObject of the class ObjectOutputStream or the method
readObject of the class ObjectInputStream, the class whose objects are written to a
file must implement the Serializable interface.

■ The way that you test for the end of a file depends on whether your program is read-
ing from a text file or a binary file.

■ You can use the class RandomAccessFile to create a stream that gives random access
to the bytes in a file.

Chapter Summary

5640_ch10.fm Page 569 Wednesday, February 11, 2004 2:33 PM

570 Chapter 10 File I/O

ANSWERS TO SELF-TEST EXERCISES

1. With an input stream, data flows from a file or input device to your program. With an output
stream, data flows from your program to a file or output device.

2. A binary file contains data that is processed as binary data. A text file allows your program
and editor to view the file as if it contained a sequence of characters. A text file can be
viewed with an editor, whereas a binary file cannot.

3. A FileNotFoundException would be thrown if the file cannot be opened because, for
example, there is already a directory (folder) named stuff.txt. Note that if the file does
not exist but can be created, then no exception is thrown. If you answered IOException,
you are not wrong, because a FileNotFoundException is an IOException. However, the
better answer is the more specific exception class, namely FileNotFoundException.

4. No. That is why we use an object of the class FileOutputStream as an argument. The
correct way to express the code displayed in the question is as follows:

PrintWriter outputStream =
 new PrintWriter(new FileOutputStream("stuff.txt"));

5. PrintWriter outputStream =
 new PrintWriter(new FileOutputStream("sam");

6. PrintWriter outStream =
 new PrintWriter(new FileOutputStream("sam", true));

7. Yes, it will send suitable output to the text file because the class Person has a well-defined
toString() method.

8. BufferedReader fileIn =
 new BufferedReader(new FileReader("joe"));

9. The method readLine returns a value of type String. The method read reads a single
character, but it returns it as a value of type int. To get the value to be of type char, you
need to do a type cast.

10. Both read and readLine in the class BufferedReader might throw an IOException.

11. The try block in Display 10.3 is larger so that it includes the invocations of the method
readLine, which might throw an IOException. The method println in Display 10.1
does not throw any exceptions that must be caught.

12. Yes

13. No

14. In the following code from exercise 12:

BufferedReader inputStream =
 new BufferedReader(new FileReader("morestuff.txt"));

5640_ch10.fm Page 570 Wednesday, February 11, 2004 2:33 PM

Answers to Self-Test Exercises 571

The possible exception is thrown by the FileReader constructor not by the
BufferedReader constructor. The code in exercise 13 has no invocation of a FileReader
constructor.

15. No, you must read the number as a string and then convert the string to a number with
Integer.parseInt (or in some other way).

16. When the method readLine tries to read beyond the end of a file, it returns the value
null. Thus, you can test for the end of a file by testing for null.

17. The method read reads a single character, but it returns it as a value of type int. To get the
value to be of type char, you need to do a type cast.

18. When the method read tries to read beyond the end of a file, it returns the value −1. Thus,
you can test for the end of a file by testing for the value −1. This works because all “real”
characters return a positive int value.

19. Yes, if original.txt is an empty file, then the file numbered.txt produced by the pro-
gram will also be empty.

20. Only the classes FileReader and FileOutputStream have a constructor that accepts a
file name as an argument.

21. Yes, it is legal.

22. Replace

System.setErr(errStream);

with

System.setOut(errStream);

23. Add

System.setOut(errStream);

to get

System.setErr(errStream);
System.setOut(errStream);

24. import java.io.File;

public class FileExercise
{
 public static void main(String[] args)
 {
 File fileObject = new File("Sally.txt");
 if (fileObject.exists())
 System.out.println(
 "There is a file named Sally.txt.");

5640_ch10.fm Page 571 Wednesday, February 11, 2004 2:33 PM

572 Chapter 10 File I/O

 else
 System.out.println(
 "There is no file named Sally.txt.");
 }
}

25. import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
import java.io.File;

public class FileExercise2
{
 public static void main(String[] args)
 {
 BufferedReader keyboard = new BufferedReader(
 new InputStreamReader(System.in));
 String fileName = null;
 File fileObject = null;

 try
 {
 System.out.print("Enter a file name and I will");
 System.out.println("tell you if it exists.");
 fileName = keyboard.readLine();
 fileName = fileName.trim();
 fileObject = new File(fileName);

 if (fileObject.exists())
 {
 System.out.println("There is a file named "
 + fileName);
 System.out.println("Delete the file? (y/n)");
 char answer = (char)System.in.read();
 //Alternatively you can use
 //ConsoleIn.readLineNonwhiteChar
 //which does not need try-catch.

 if ((answer == 'y') || (answer == 'Y'))
 {
 if (fileObject.delete())
 System.out.println("File deleted.");
 else
 System.out.println(
 "Cannot delete file.");
 }
 }

5640_ch10.fm Page 572 Wednesday, February 11, 2004 2:33 PM

Answers to Self-Test Exercises 573

 else
 System.out.println(
 "No file named " + fileName);
 }
 catch(IOException e)
 {
 System.out.println(
 "Error reading from keyboard.");
 }
 }
}

26. ObjectOutputStream outputThisWay =
 new ObjectOutputStream(
 new FileOutputStream("bindata.dat"));

27. outputThisWay.writeDouble(v1);
outputThisWay.writeDouble(v2);

28. outputThisWay.writeUTF("Hello");

29. outputThisWay.close();

30. ObjectInputStream inputThing =
 new ObjectInputStream(
 new FileInputStream("someStuff"));

31. number = inputThing.readDouble();

32. inputThing.close();

33. If a number is written to a file with writeInt, it should be read only with readInt. If you
use readLong or readDouble to read the number, something will go wrong.

34. You should not use readUTF to read a string from a text file. You should use readUTF only
to read a string from a binary file. Moreover, the string should have been written to that file
using writeUTF.

35. When opening a binary file for either output or input in the ways discussed in this chapter,
a FileNotFoundException might be thrown and other IOExceptions may be thrown.

36. An EOFException is thrown when your program tries to read the (nonexisting) fourth
number.

37. It is not an infinite loop because when the end of the file is reached, an exception will be
thrown, and that will end the entire try block.

38. You add the two words implements Serializable to the beginning of the class defini-
tion. You also must do this for the classes for the instance variables and so on for all levels of
class instance variables within classes.

39. import java.io.Serializable; or import java.io.*;

5640_ch10.fm Page 573 Wednesday, February 11, 2004 2:33 PM

574 Chapter 10 File I/O

40. The return type is Object, which means the returned value usually needs to be type cast.

41. Yes. That is why it is a legitimate argument for writeObject.

42. No. Each time the program is run, the file will get longer.

43. Add the following near the start of main:

ioStream.setLength(0);

PROGRAMMING PROJECTS

PROJECTS INVOLVING ONLY TEXT FILES

1. Write a program that will search a text file of strings representing numbers of type int and
will write the largest and the smallest numbers to the screen. The file contains nothing but
strings representing numbers of type int, one per line.

2. Write a program that takes its input from a text file of strings representing numbers of type
double and outputs the average of the numbers in the file to the screen. The file contains
nothing but strings representing numbers of type double, one per line.

3. Write a program that takes its input from a text file of strings representing numbers of type
double. The program outputs to the screen the average and standard deviation of the num-
bers in the file. The file contains nothing but strings representing numbers of type double,
one per line. The standard deviation of a list of numbers n1, n2, n3, and so forth is defined
as the square root of the average of the following numbers:

(n1 - a)2, (n2 - a)2, (n3 - a)2, and so forth.

The number a is the average of the numbers n1, n2, n3, and so forth. Hint: Write your pro-
gram so that it first reads the entire file and computes the average of all the numbers, then
closes the file, then reopens the file and computes the standard deviation. You will find it
helpful to first do Programming Project 2 and then modify that program to obtain the pro-
gram for this project.

4. Write a program to edit text files for extra blanks. The program will replace any string of
two or more blanks with a single blank. Your program should work as follows: Create a
temporary file. Copy from the file to the temporary file but do not copy extra blanks. Copy
the contents of the temporary file back into the original file. Use a method (or methods) in
the class File to remove the temporary file. You will also want to use the class File for
other things in your program. The temporary file should have a name different from all
existing files so that the existing files are not affected (except for the file being edited). Your
program will ask the user for the name of the file to be edited. However, it will not ask the
user for the name of the temporary file but instead will generate the name within the pro-
gram. You can generate the name any way that is clear and efficient. One possible way to

5640_ch10.fm Page 574 Wednesday, February 11, 2004 2:33 PM

Programming Projects 575

generate the temporary file is to start with an unlikely name, such as "TempX", and to
append a character, such as 'X', until a name is found that does not name an existing file.

5. Write a program that gives and takes advice on program writing. The program starts by
writing a piece of advice to the screen and asking the user to type in a different piece of
advice. The program then ends. The next person to run the program receives the advice
given by the person who last ran the program. The advice is kept in a text file and the con-
tent of the file changes after each run of the program. You can use your editor to enter the
initial piece of advice in the file so that the first person who runs the program receives some
advice. Allow the user to type in advice of any length so that it can be any number of lines
long. The user is told to end his or her advice by pressing the Return key two times. Your
program can then test to see that it has reached the end of the input by checking to see
when it reads two consecutive occurrences of the character '\n'. Alternatively, your pro-
gram can simply test for an empty line marking the end of the file.

PROJECTS INVOLVING BINARY FILES

6. Write a program that will search a binary file of numbers of type int and write the largest
and the smallest numbers to the screen. The file contains nothing but numbers of type int
written to the file with writeInt.

7. Write a program that takes its input from a binary file of numbers of type double and out-
puts the average of the numbers in the file to the screen. The file contains nothing but
numbers of type double written to the file with writeDouble.

8. Write a program that takes its input from a binary file of numbers of type double. The file
contains nothing but numbers of type double written to the file with writeDouble. The
program outputs to the screen the average and standard deviation of the numbers in the
file. The standard deviation of a list of numbers n1, n2, n3, and so forth is defined as the
square root of the average of the following numbers:

(n1 - a)2, (n2 - a)2, (n3 - a)2, and so forth.

The number a is the average of the numbers n1, n2, n3, and so forth. Hint: Write your pro-
gram so that it first reads the entire file and computes the average of all the numbers, then
closes the file, then reopens the file and computes the standard deviation. You will find it
helpful to first do Programming Project 7 and then modify that program to obtain the pro-
gram for this project.

9. Change the definition of the class Person in Display 5.11 to be serializable. Note that this
requires that you also change the class Date. Then, write a program to maintain a binary
file of records of people (records of type Person). Allow commands to delete a record spec-
ified by the person’s name, to add a record, to retrieve and display a record, and to obtain
all records of people within a specified age range. To obtain the age of a person, you need
the current date. Your program will ask the user for the current date when the program
begins. You can do this with random access files, but for this exercise do not use random
access files. Use a file or files that record records with the method writeObject of the class
ObjectOutputStream.

5640_ch10.fm Page 575 Wednesday, February 11, 2004 2:33 PM

