

CHAPTER

8

Polymorphism and Abstract Classes

8.1 Polymorphism 416

Late Binding 417

The

final Modifier 419

Example: Sales Records 419

Late Binding with

toString 427

Pitfall: No Late Binding for Static Methods

✜ 427

Downcasting and Upcasting 430

Pitfall: Downcasting 432

Tip: Checking to See If Downcasting Is
Legitimate

✜ 432

A First Look at the

clone Method 434

Pitfall: The

clone Method Return Type
Is

Object 436

Pitfall: Limitations of Copy Constructors

✜ 436

8.2 Abstract Classes 440

Abstract Classes 440

Pitfall: You Cannot Create Instances of an Abstract
Class 445

Tip: An Abstract Class Is a Type 445

CHAPTER SUMMARY 447
ANSWERS TO SELF-TEST EXERCISES 447
PROGRAMMING PROJECTS 449

5640_ch08.fm Page 415 Wednesday, February 11, 2004 2:26 PM

8

Polymorphism and Abstract Classes

You know my methods, Watson.

Sir Arthur Conan Doyle,

The Crooked Man

(Sherlock Holmes)

INTRODUCTION

The three main programming mechanisms that constitute object-oriented
programming (OOP) are encapsulation, inheritance, and polymorphism. We
have already discussed the first two. In this chapter we discuss polymorphism.

Polymorphism

 refers to the ability to associate many meanings to one method
name by means of a special mechanism known as

late binding

 or

dynamic
binding.

This chapter also covers

abstract classes,

 which are classes in which some
methods are not fully defined. Abstract classes are designed to be used only as
base classes for defining new classes. You cannot create instances of (objects
of) an abstract class; you can only create instances of its descendent classes.

Both polymorphism and abstract classes deal with code in which a method
is used before it is defined. Although this may sound paradoxical, it all works
out smoothly in Java.

PREREQUISITES

This chapter requires Chapters 1 through 5 and Chapter 7 with the exception
that Section 5.4 on packages and

javadoc

 is not required. This chapter does
not use any material on arrays from Chapter 6.

Sections 8.1 on polymorphism and 8.2 on abstract classes are independent
of each other and you may cover Section 8.2 before Section 8.1 if you wish.

Polymorphism

I did it my way.

Frank Sinatra

Inheritance allows you to define a base class and define software for the base
class. That software can then be used not only for objects of the base class but
also for objects of any class derived from the base class.

Polymorphism

 allows
you to make changes in the method definition for the derived classes and have
those changes apply to the software written

for the base class.

 This all happens
automatically in Java but it is important to understand the process, and to

8.1

5640_ch08.fm Page 416 Wednesday, February 11, 2004 2:26 PM

Polymorphism 417

understand polymorphism we need a concrete example. The next subsection begins
with such an example.

■ LATE BINDING

Suppose you are designing software for a graphics package that has classes for several
kinds of figures, such as rectangles, circles, ovals, and so forth. Each figure might be an
object of a different class. For example, the

Rectangle

 class might have instance vari-
ables for a height, width, and center point, while the

Circle

 class might have instance
variables for a center point and a radius. In a well-designed programming project, all of
these classes would be descendents of a single parent class called, for example,

Figure

.
Now, suppose you want a method to draw a figure on the screen. To draw a circle, you
need different instructions from those you need to draw a rectangle. So, each class
needs to have a different method to draw its kind of figure. However, because the
methods belong to the classes, they can all be called

draw

. If

r

 is a

Rectangle

 object and

c

 is a

Circle

 object, then

r.draw()

 and

c.draw()

 can be methods implemented with
different code. All this is not new, but now we move on to something new.

Now, the parent class

Figure

 may have methods that apply to all figures. For exam-
ple, it might have a method called

center

 that moves a figure to the center of the screen
by erasing it and then redrawing it in the center of the screen. The method

center

 of
the class

Figure

 might use the method

draw

 to redraw the figure in the center of the
screen. When you think of using the inherited method

center

 with figures of the
classes

Rectangle

 and

Circle

, you begin to see that there are complications here.

To make the point clear and more dramatic, let’s suppose the class

Figure

 is already
written and in use and at some later time you add a class for a brand-new kind of figure,
say the class

Triangle

. Now

Triangle

 can be a derived class of the class

Figure

, so the
method

center

 will be inherited from the class

Figure

 and thus should apply to (and
perform correctly for!) all

Triangle

s. But there is a complication. The method

center

uses

draw

, and the method

draw

 is different for each type of figure. But, the method

cen-

ter

 is defined in the class

Figure

 and so the method

center

 was compiled before we
wrote the code for the method

draw

 of the class

Triangle

. When we invoke the method

center

 with an object of the class

Triangle

, we want the code for the method

center

 to
use a method that was not even defined when we compiled the method

center

, namely
the method

draw

 for the class

Triangle

. Can this be made to happen in Java? Yes, it can,
and moreover, it happens automatically. You need not do anything special when you
define either the base class

Figure

 or the derived class

Triangle

.

The situation we discussed for the method

center

 in the derived class

Triangle

works out as we want because Java uses a mechanism known as late binding

 or
dynamic binding

. Let’s see how late binding works in this case involving figure classes.

Binding

 refers to the process of associating a method definition with a method invo-
cation. If the method definition is associated with the method definition when the
code is compiled, that is called early binding

. If the method definition is associated
with the method invocation when the method is invoked (at run time), that is called
late binding

 or dynamic binding

. Java uses late binding for all methods except for a

late binding

binding

early binding

5640_ch08.fm Page 417 Tuesday, February 17, 2004 5:30 PM

418 Chapter 8 Polymorphism and Abstract Classes

few cases discussed later in this chapter. Let’s see how late binding works in the case of
our method

center

.

Recall that the method

center

 was defined in the class

Figure

 and that the defini-
tion of the method

center

 included an invocation of the method

draw

. If, contrary to
fact, Java used early binding, then when the code for the method

center

 was compiled
the invocation of the method

draw

 would be bound to the currently available definition
of

draw

, which is the one given in the definition of

Figure

. If early binding were used,
the method

center

 would behave exactly the same for all derived classes of the class

Figure

 as it does for objects created using the class

Figure

. But, fortunately, Java uses
late binding, so when

center is invoked by an object of the class Triangle, the invoca-
tion of draw (inside the method center) is not bound to a definition of draw until the
invocation actually takes place. At that point in time, the run-time system knows the
calling object is an instance of the class Triangle and so uses the definition of draw
given in the definition of the class Triangle (even if the invocation of draw is inside the
definition of the method center). So, the method center behaves differently for an
object of the class Triangle than it would for an object that is just a plain old Figure.
With late binding, as in Java, things automatically work out the way you normally
want them to.

Note that in order for late binding to work, each object must somehow know which
definition of each method applies to that object. So, when an object is created in a sys-
tem using late binding, the description of the object must include (either directly or
indirectly) a description of where the appropriate definition of each method is located.
This additional overhead is the penalty you pay for the convenience of late binding.

The terms polymorphism and late binding are essentially just different words for the
same concept. The term polymorphism refers to the processes of assigning multiple
meanings to the same method name using late binding.

LATE BINDING

With late binding the definition of a method is not bound to an invocation of the method until
run time, in fact, not until the time at which the particular invocation takes place. Java uses late
binding (for all methods except those discussed in the Pitfalls section entitled “No Late Binding
for Static Methods ✜ ”).

POLYMORPHISM

Polymorphism refers to the ability to associate many meanings to one method name by means of
the late binding mechanism. Thus, polymorphism and late binding are really the same topic.

polymorphism

5640_ch08.fm Page 418 Wednesday, February 11, 2004 2:26 PM

Polymorphism 419

Example

■ THE

final MODIFIER

You can mark a method to indicate that it cannot be overridden with a new definition
in a derived class. You do this by adding the

final

 modifier to the method heading, as
in the following sample heading:

public final void someMethod()
{
 .
 .
 .

An entire class can be declared final, in which case you cannot use it as a base class to
derive any other class from it. The syntax for declaring a class to be final is illustrated in
what follows:

public final class SomeClass
{
 .
 .
 .

If a method is marked as

final

, that means the compiler can use early binding with
that particular method, which enables the compiler to be more efficient. However, the
added efficiency is normally not great and we suggest not using the

final

 modifier
solely for reasons of efficiency. (Also, it can sometimes aid security to mark certain
methods as

final

.)

You can view the

final

 modifier as a way of turning off late binding for a method
(or an entire class). Of course, it does more than just turn off late binding—it turns off
the ability to redefine the method in any descendent class.

SALES RECORDS

Suppose you are designing a record-keeping program for an automobile parts store. You want to
make the program versatile, but you are not sure you can account for all possible situations. For
example, you want to keep track of sales, but you cannot anticipate all types of sales. At first,

THE

final MODIFIER

If you add the modifier

final to the definition of a method, that indicates that the method may
not be redefined in a derived class. If you add the modifier

final to the definition of a class, that
indicates that the class may not be used as a base class to derive other classes.

final

5640_ch08.fm Page 419 Tuesday, February 17, 2004 5:30 PM

420 Chapter 8 Polymorphism and Abstract Classes

Self-Test Exercises

there will only be regular sales to retail customers who go to the store to buy one particular part.
However, later you may want to add sales with discounts or mail order sales with a shipping charge.
All of these sales will be for an item with a basic price and ultimately will produce some bill. For a
simple sale, the bill is just the basic price, but if you later add discounts, then some kinds of bills will
also depend on the size of the discount. Now your program needs to compute daily gross sales,
which intuitively should just be the sum of all the individual sales bills. You may also want to calcu-
late the largest and smallest sales of the day or the average sale for the day. All of these can be cal-
culated from the individual bills, but many of the methods for computing the bills will not be added
until later, when you decide what types of sales you will be dealing with. Because Java uses late
binding, you can write a program to total all bills even though you will not determine the code for
some of the bills until later. (For simplicity in this first example, we assume that each sale is for just
one item, although we could, but will not here, account for sales of multiple items.)

Display 8.1 contains the definition for a class named Sale. All types of sales will be derived
classes of the class Sale. The class Sale corresponds to simple sales of a single item with no
added discounts and no added charges. Note that the methods lessThan and equalDeals
both include invocations of the method bill. We can later define derived classes of the class
Sale and define their versions of the method bill, and the definitions of the methods less-
Than and equalDeals, which we gave with the class Sale, will use the version of the method
bill that corresponds to the object of the derived class.

For example, Display 8.2 shows the derived class DiscountSale. Notice that the class Dis-
countSale requires a different definition for its version of the method bill. Now the methods
lessThan and equalDeals, which use the method bill, are inherited from the base class
Sale. But, when the methods lessThan and equalDeals are used with an object of the class
DiscountSale, they will use the version of the method definition for bill that was given with
the class DiscountSale. This is indeed a pretty fancy trick for Java to pull off. Consider the
method call d1.lessThan(d2) for objects d1 and d2 of the class DiscountSale. The defini-
tion of the method lessThan (even for an object of the class DiscountSale) is given in the
definition of the base class Sale, which was compiled before we ever even thought of the class
DiscountSale. Yet, in the method call d1.lessThan(d2), the line that calls the method bill
knows enough to use the definition of the method bill given for the class DiscountSale. This
all works out because Java uses late binding.

Display 8.3 gives a sample program that illustrates how the late binding of the method bill and
the methods that use bill work in a complete program.

1. Explain the difference between the terms late binding and polymorphism.

2. Suppose you modify the definitions of the class Sale (Display 8.1) by adding the modifier
final to the definition of the method bill. How would that change the output of the
program in Display 8.3?

5640_ch08.fm Page 420 Wednesday, February 11, 2004 2:26 PM

Polymorphism 421

Display 8.1 The Base Class Sale (Part 1 of 3)

1 /**
2 Class for a simple sale of one item with no tax, discount, or other adjustments.
3 Class invariant: The price is always nonnegative; the name is a nonempty string.
4 */
5 public class Sale
6 {
7 private String name; //A nonempty string
8 private double price; //nonnegative

9 public Sale()
10 {
11 name = "No name yet";
12 price = 0;
13 }

14 /**
15 Precondition: theName is a nonempty string; thePrice is nonnegative.
16 */
17 public Sale(String theName, double thePrice)
18 {
19 setName(theName);
20 setPrice(thePrice);
21 }

22 public Sale(Sale originalObject)
23 {
24 if (originalObject == null)
25 {
26 System.out.println("Error: null Sale object.");
27 System.exit(0);
28 }
29 //else
30 name = originalObject.name;
31 price = originalObject.price;
32 }

33 public static void announcement()
34 {
35 System.out.println("This is the Sale class.");
36 }

37 public double getPrice()
38 {
39 return price;
40 }

5640_ch08.fm Page 421 Wednesday, February 11, 2004 2:26 PM

codes421.html

422 Chapter 8 Polymorphism and Abstract Classes

Display 8.1 The Base Class Sale (Part 2 of 3)

41 /**
42 Precondition: newPrice is nonnegative.
43 */
44 public void setPrice(double newPrice)
45 {
46 if (newPrice >= 0)
47 price = newPrice;
48 else
49 {
50 System.out.println("Error: Negative price.");
51 System.exit(0);
52 }
53 }

54 public String getName()
55 {
56 return name;
57 }

58 /**
59 Precondition: newName is a nonempty string.
60 */
61 public void setName(String newName)
62 {
63 if (newName != null && newName != "")
64 name = newName;
65 else
66 {
67 System.out.println("Error: Improper name value.");
68 System.exit(0);
69 }
70 }

71 public String toString()
72 {
73 return (name + " Price and total cost = $" + price);
74 }

75 public double bill()
76 {
77 return price;
78 }

5640_ch08.fm Page 422 Wednesday, February 11, 2004 2:26 PM

Polymorphism 423

Display 8.1 The Base Class Sale (Part 3 of 3)

79 /*
80 Returns true if the names are the same and the bill for the calling
81 object is equal to the bill for otherSale; otherwise returns false.
82 Also returns false if otherObject is null.
83 */
84 public boolean equalDeals(Sale otherSale)
85 {
86 if (otherSale == null)
87 return false;
88 else
89 return (name.equals(otherSale.name)
90 && bill() == otherSale.bill());
91 }

92 /*
93 Returns true if the bill for the calling object is less
94 than the bill for otherSale; otherwise returns false.
95 */
96 public boolean lessThan (Sale otherSale)
97 {
98 if (otherSale == null)
99 {

100 System.out.println("Error: null Sale object.");
101 System.exit(0);
102 }
103 //else
104 return (bill() < otherSale.bill());
105 }

106 public boolean equals(Object otherObject)
107 {
108 if (otherObject == null)
109 return false;
110 else if (getClass() != otherObject.getClass())
111 return false;
112 else
113 {
114 Sale otherSale = (Sale)otherObject;
115 return (name.equals(otherSale.name)
116 && (price == otherSale.price));
117 }
118 }
119 }

When invoked, these
methods will use the
definition of the method
bill that is appropriate for
each of the objects.

5640_ch08.fm Page 423 Wednesday, February 11, 2004 2:26 PM

424 Chapter 8 Polymorphism and Abstract Classes

Display 8.2 The Derived Class DiscountSale (Part 1 of 2)

1 /**
2 Class for a sale of one item with discount expressed as a percent of the price,
3 but no other adjustments.
4 Class invariant: The price is always nonnegative; the name is a
5 nonempty string; the discount is always nonnegative.
6 */

1 public class DiscountSale extends Sale
2 {
3 private double discount; //A percent of the price. Cannot be negative.

4 public DiscountSale()
5 {
6 super();
7 discount = 0;
8 }

9 /**
10 Precondition: theName is a nonempty string; thePrice is nonnegative;
11 theDiscount is expressed as a percent of the price and is nonnegative.
12 */
13 public DiscountSale(String theName,
14 double thePrice, double theDiscount)
15 {
16 super(theName, thePrice);
17 setDiscount(theDiscount);
18 }

19 public DiscountSale(DiscountSale originalObject)
20 {
21 super(originalObject);
22 discount = originalObject.discount;
23 }

24 public static void announcement()
25 {
26 System.out.println("This is the DiscountSale class.");
27 }

28 public double bill()
29 {
30 double fraction = discount/100;
31 return (1 − fraction)*getPrice();
32 }

The meaning would be unchanged if this
line were omitted.

5640_ch08.fm Page 424 Wednesday, February 11, 2004 2:26 PM

codes424.html

Polymorphism 425

3. Would it be legal to add the following method definition to the class DiscountSale?

public static boolean isAGoodBuy(Sale theSale)
{
 return (theSale.getDiscount() > 20);
}

4. Complete the definition of the method equals for the class DiscountSale (Display 8.2).

Display 8.2 The Derived Class DiscountSale (Part 2 of 2)

33 public double getDiscount()
34 {
35 return discount;
36 }

37 /**
38 Precondition: Discount is nonnegative.
39 */
40 public void setDiscount(double newDiscount)
41 {
42 if (newDiscount >= 0)
43 discount = newDiscount;
44 else
45 {
46 System.out.println("Error: Negative discount.");
47 System.exit(0);
48 }
49 }

50 public String toString()
51 {
52 return (getName() + " Price = $" + getPrice()
53 + " Discount = " + discount + "%\n"
54 + " Total cost = $" + bill());
55 }

56 public boolean equals(Object otherObject)
 <The rest of the definition of equals is Self-Test Exercise 4.>

57 }

5640_ch08.fm Page 425 Wednesday, February 11, 2004 2:26 PM

426 Chapter 8 Polymorphism and Abstract Classes

Display 8.3 Late Binding Demonstration

1 /**
2 Demonstrates late binding.
3 */
4 public class LateBindingDemo
5 {
6 public static void main(String[] args)
7 {
8 Sale simple = new Sale("floor mat", 10.00);//One item at $10.00.
9 DiscountSale discount = new DiscountSale("floor mat", 11.00, 10);

10 //One item at $11.00 with a 10% discount.
11 System.out.println(simple);
12 System.out.println(discount);

13 if (discount.lessThan(simple))
14 System.out.println("Discounted item is cheaper.");
15 else
16 System.out.println("Discounted item is not cheaper.");

17 Sale regularPrice = new Sale("cup holder", 9.90);//One item at $9.90.
18 DiscountSale specialPrice = new DiscountSale("cup holder", 11.00, 10);
19 //One item at $11.00 with a 10% discount.
20 System.out.println(regularPrice);
21 System.out.println(specialPrice);

22 if (specialPrice.equalDeals(regularPrice))
23 System.out.println("Deals are equal.");
24 else
25 System.out.println("Deals are not equal.");
26 }
27 }

SAMPLE DIALOGUE

floor mat Price and total cost = $10.0
floor mat Price = $11.0 Discount = 10.0%
 Total cost = $9.9
Discounted item is cheaper.
cup holder Price and total cost = $9.9
cup holder Price = $11.0 Discount = 10.0%
 Total cost = $9.9
Deals are equal.

The method lessThan uses different
definitions for discount.bill()
and simple.bill().

The method equalDeals uses
different definitions for
specialPrice.bill() and
regularPrice.bill().

The equalDeals method says that two items are equal provided they
have the same name and the same bill (same total cost). It does not
matter how the bill (the total cost) is calculated.

5640_ch08.fm Page 426 Wednesday, February 11, 2004 2:26 PM

codes426.html

Polymorphism 427

Pitfall

■ LATE BINDING WITH toString

In the subsection “The Methods equals and toString” in Chapter 4, we noted that if
you include an appropriate toString method in the definition of a class, then you can
output an object of the class using System.out.println. For example, the following
works because Sale has a suitable toString method:

Sale aSale = new Sale("tire gauge", 9.95);
System.out.println(aSale);

This produces the screen output

tire gauge Price and total cost = $9.95

This happens because Java uses late binding. Here are the details.

The method invocation System.out.println(aSale) is an invocation of the method
println with the calling object System.out. One definition of the method println has a
single argument of type Object. The definition is equivalent to the following:

public void println(Object theObject)
{
 System.out.println(theObject.toString());
}

(The invocation of the method println inside the braces is a different, overloaded def-
inition of the method println. That invocation inside the braces uses a method
println that has a parameter of type String, not a parameter of type Object.)

This definition of println was given before the class Sale was defined. Yet in the
invocation

 System.out.println(aSale);

with an argument aSale of type Sale (and hence also of type Object), it is the defini-
tion of toString in the class Sale that is used, not the definition of toString in the
class Object. Late binding is what makes this work.

NO LATE BINDING FOR STATIC METHODS ✜

Java does not use late binding with private methods, methods marked final, or static methods.
With private methods and final methods, this is not an issue since dynamic binding would serve
no purpose anyway. However, with static methods it can make a difference when the static
method is invoked using a calling object, and such cases arise more often than you might think.

When Java (or any language) does not use late binding, it uses static binding. With static bind-
ing, the decision of which definition of a method to use with a calling object is made at compile
time based on the type of the variable naming the object.

5640_ch08.fm Page 427 Wednesday, February 11, 2004 2:26 PM

428 Chapter 8 Polymorphism and Abstract Classes

Display 8.4 illustrates the effect of static binding on a static method with a calling object. Note
that the static method announcement() in the class Sale has its definition overridden in the
derived class DiscountSale. However, when an object of type DiscountSale is named by a
variable of type Sale, it is the definition announcement() in the class Sale that is used, not
the definition of announcement in the class DiscountSale.

“So, what’s the big deal?” you may ask. A static method is normally called with a class name and
not a calling object. It may look that way, but there are cases where a static method has a calling
object in an inconspicuous way. If you invoke a static method within the definition of a nonstatic
method but without any class name or calling object, then the calling object is an implicit this,
which is a calling object.

For example, suppose you add the following method to the class Sale:

public void showAdvertisement()
{
 announcement();
 System.out.println(toString());
}

Suppose further that the method showAdvertisement is not overridden in the class Dis-
countSale, then the method showAdvertisement is inherited unchanged from Sale.

Now consider the following code:

Sale s = new Sale("floor mat", 10.00);
DiscountSale discount = new DiscountSale("floor mat", 11.00, 10);
s.showAdertisement();
discount.showAdertisement();

You might expect the following output:

This is the Sale class.
floor mat Price and total cost = $10.0
This is the DiscountSale class.
floor mat Price = $11.0 Discount = 10.0%
 Total cost = $9.9

However, since the definition used for the static method announcement, inside of showAdver-
tisement, is determined at compile time (based on the type of the variable holding the calling
object), the output actually is the following, where the change is shown in red:

This is the Sale class.
floor mat Price and total cost = $10.0
This is the Sale class.
floor mat Price = $11.0 Discount = 10.0%
 Total cost = $9.9

Java uses late binding with the nonstatic method toString but static binding with the static
method announcement.

5640_ch08.fm Page 428 Wednesday, February 11, 2004 2:26 PM

Polymorphism 429

Display 8.4 No Late Binding with Static Methods ✜

1 /**
2 Demonstrates that static methods use static binding.
3 */
4 public class StaticMethodsDemo
5 {
6 public static void main(String[] args)
7 {
8 Sale.announcement();
9 DiscountSale.announcement();

10 System.out.println(
11 "That showed that you can override a static method definition.");

12 Sale s = new Sale();
13 DiscountSale discount = new DiscountSale();
14 s.announcement();
15 discount.announcement();
16 System.out.println("No surprises so far, but wait.");

17 Sale discount2 = discount;
18 System.out.println(
19 "discount2 is a DiscountSale object in a Sale variable.");
20 System.out.println("Which definition of announcement() will it use?");
21 discount2.announcement();
22 System.out.println(
23 "It used the Sale version of announcement()!");
24 }
25 }

SAMPLE DIALOGUE

This is the Sale class.
This is the DiscountSale class.
That showed that you can override a static method definition.
This is the Sale class.
This is the DiscountSale class.
No surprises so far, but wait.
discount2 is a DiscountSale object in a Sale variable.
Which definition of announcement() will it use?
This is the Sale class.
It used the Sale version of announcement()!

Java uses static binding with static methods
so the choice of which definition of a static
method to use is determined by the type of
the variable, not by the object.

discount and discount2 name the same object,
but one is a variable of type Sale and one is a
variable of type DiscountSale.

If Java had used late binding with static
methods, then this would have been the
other announcement.

5640_ch08.fm Page 429 Wednesday, February 11, 2004 2:26 PM

codes429.html

430 Chapter 8 Polymorphism and Abstract Classes

■ DOWNCASTING AND UPCASTING

The following is perfectly legal (given the class definitions in Displays 8.1 and 8.2):

Sale saleVariable;
DiscountSale discountVariable =
 new DiscountSale("paint", 15, 10);
saleVariable = discountVariable;
System.out.println(saleVariable.toString());

An object of a derived class, in this case the derived class DiscountSale, also has the
type of its base class, in this case Sale, and so can be assigned to a variable of the base
class type. Now let’s consider the invocation of the method toString() on the last line
of this code.

Because Java uses late binding, the invocation

saleVariable.toString()

uses the definition of the method toString given in the class DiscountSale. So the
output is

paint Price = $15.0 Discount = 10.0%
 Total cost = $13.5

Because of late binding, the meaning of the method toString is determined by the
object, not by the type of the variable saleVariable.

You may well respond, “Who cares? Why would I ever want to assign an object of
type DiscountSale to a variable of type Sale?”1 You make such assignments more often
than you might think, but you tend to not notice them because they happen behind
the scenes. Recall that a parameter is really a local variable, so every time you use an
argument of type DiscountSale for a parameter of type Sale, you are assigning an
object of type DiscountSale to a variable of type Sale. For example, consider the fol-
lowing invocation taken from the definition of the copy constructor for DiscountSale
(Display 8.2):

super(originalObject);

In this invocation originalObject is of type DiscountSale, but super is the copy con-
structor for the base class Sale and so super has a parameter of type Sale, which is a
local variable of type Sale that is set equal to the argument originalObject of type
DiscountSale.

Note that the type of the variable naming an object determines which method
names can be used in an invocation with that calling object. (Self-Test Exercise 3 may

1 It is actually the references to the object that are assigned, not the objects themselves, but that
subtlety is not relevant to what we are discussing here and the language is already complicated
enough.

5640_ch08.fm Page 430 Wednesday, February 11, 2004 2:26 PM

Polymorphism 431

help you to understand this point.) However, the object itself always determines the
meaning of a method invocation performed by an object; this is simply what we mean
by late binding.

Assigning an object of a derived class to a variable of a base class (or any ancestor
class) is often called upcasting because it is like a type cast to the type of the base class
and, in the normal way of writing inheritance diagrams base classes are drawn above
derived classes.2

 When you do a type cast from a base case to a derived class (or from any ancestor
class to any descendent class), that is called a downcast. Upcasting is pretty straightfor-
ward; there are no funny cases to worry about, and in Java things always work out the
way you want them to. Downcasting is more troublesome. First of all, downcasting
does not always make sense. For example, the downcast

Sale saleVariable = new Sale("paint", 15);
DiscountSale discountVariable;
discountVariable = (DiscountSale)saleVariable;//Error

does not make sense because the object named by saleVariable has no instance vari-
able named discount and so cannot be an object of type DiscountSale. Every Dis-
countSale is a Sale, but not every Sale is a DiscountSale, as indicated by this
example. It is your responsibility to use downcasting only in situations where it makes
sense.

It is instructive to note that

discountVariable = (DiscountSale)saleVariable;

produces a run-time error but will compile with no error. However, the following,
which is also illegal, produces a compile-time error:

discountVariable = saleVariable;

AN OBJECT KNOWS THE DEFINITIONS OF ITS METHODS

The type of a class variable determines which method names can be used with the variable, but
the object named by the variable determines which definition of the method name is used. A spe-
cial case of this rule is the following: The type of a class parameter determines which method
names can be used with the parameter, but the argument determines which definition of the
method name is used.

2 We prefer to think of an object of the derived class as actually having the type of its base class
as well as its own type. So, this is not, strictly speaking, a type cast but it does no harm to follow
standard usage and call it a type cast in this case.

upcasting

downcasting

5640_ch08.fm Page 431 Wednesday, February 11, 2004 2:26 PM

432 Chapter 8 Polymorphism and Abstract Classes

Tip

Pitfall

Java catches these downcasting errors as soon as it can, which may be at compile time
or at run time depending on the case.

While downcasting can be dangerous, it is sometimes necessary. For example, we
inevitably use downcasting when we define an equals method for a class. For example,
note the following line from the definition of equals in the class Sale (Display 8.1):

Sale otherSale = (Sale)otherObject;

This is a downcast from the type Object to the type Sale. Without this downcast, the
instance variables name and price in the return statement, reproduced below, would be
illegal, since the class Object has no such instance variables:

return (name.equals(otherSale.name)
 && (price == otherSale.price));

DOWNCASTING

It is the responsibility of you the programmer to use downcasting only in situations where it
makes sense. The compiler makes no checks to see if downcasting is reasonable. However, if you
use downcasting in a situation in which it does not make sense, you will usually get a run-time
error message.

CHECKING TO SEE IF DOWNCASTING IS LEGITIMATE ✜

You can use the instanceof operator to test whether or not a downcasting is sensible. A down-
casting to a specific type is sensible if the object being cast is an instance of that type, and that is
exactly what the instanceof operator tests for.

The instanceof operator checks if an object is of the type given as its second argument. The
syntax is

Object instanceof Class_Name

which returns true if Object is of type Class_Name; otherwise it returns false. So, the following
will return true if someObject is of type DiscountSale:

someObject instanceof DiscountSale

Note that since every object of every descendent class of DiscountSale is also of type Dis-
countSale, this expression will return true if someObject is an instance of any descendent
class of DiscountSale.

instanceof

5640_ch08.fm Page 432 Wednesday, February 11, 2004 2:26 PM

Polymorphism 433

Self-Test Exercises

So, if you want to type cast to DiscountSale, then you can make the casts safer as follows:

DiscountSale ds = new DiscountSale();
if (someObject instanceof DiscountSale)
{
 ds = (DiscountSale)someObject;
 System.out.println("ds was changed to " + someObject);
}
else
 System.out.println("ds was not changed.");

someObject might be, for example, a variable of type Sale or of type Object.

5. Consider the following code, which is identical to the code discussed in the opening of the
previous subsection except that we have added the type cast shown in color:

Sale saleVariable;
DiscountSale discountVariable =
 new DiscountSale("paint", 15, 10);
saleVariable = (Sale)discountVariable;
System.out.println(saleVariable.toString());

We saw that without the type cast the definition of the toString method used is the one
given in the definition of the class DiscountSale. With this added type cast, will the
definition of the toString method used still be the one given in DiscountSale or will it
be the one given in the definition of Sale?

6. Would it be legal to add the following method definition to the class DiscountSale?
What about adding it to the class Sale?

public static void showDiscount(Sale object)
{
 System.out.println("Discount = "
 + object.getDiscount());
}

7. ✜ What output is produced by the following code?

Sale someObject = new DiscountSale("map", 5, 0);
DiscountSale ds = new DiscountSale();
if (someObject instanceof DiscountSale)
{
 ds = (DiscountSale)someObject;
 System.out.println("ds was changed to " + someObject);

5640_ch08.fm Page 433 Wednesday, February 11, 2004 2:26 PM

434 Chapter 8 Polymorphism and Abstract Classes

}
else
 System.out.println("ds was not changed.");

8. ✜ What output is produced by the following code?

Sale someObject = new Sale("map", 5);
DiscountSale ds = new DiscountSale();
if (someObject instanceof DiscountSale)
{
 ds = (DiscountSale)someObject;
 System.out.println("ds was changed to " + someObject);
}
else
 System.out.println("ds was not changed.");

9. ✜ Suppose we removed the qualifier static from the method announcement() in both
Sale (Display 8.1) and DiscountSale (Display 8.2). What would be the output produced
by the following code (which is similar to the end of Display 8.4)?

Sale s = new Sale();
DiscountSale discount = new DiscountSale();
s.announcement();
discount.announcement();
System.out.println("No surprises so far, but wait.");

Sale discount2 = discount;
System.out.println(
 "discount2 is a DiscountSale object in a Sale variable.");
System.out.println(
 "Which definition of announcement() will it use?");
discount2.announcement();
System.out.println(
 "Did it used the Sale version of announcement()?");

■ A FIRST LOOK AT THE clone METHOD

Every object inherits a method named clone from the class Object. The method clone
has no parameters and is supposed to return a copy of the calling object. However, the
inherited version of clone was not designed to be used as is. Instead, you are expected
to override the definition of clone with a version appropriate for the class you are
defining. In Chapter 13 we will describe the officially sanctioned way to define the
method clone. The officially sanctioned way turns out to be a bit complicated and
requires material we do not cover until Chapter 13. In this section we will describe a
simple way to define clone that will work in most situations and allow us to discuss
how polymorphism interacts with the clone method. If you are in a hurry to see the

5640_ch08.fm Page 434 Wednesday, February 11, 2004 2:26 PM

Polymorphism 435

officially correct way to define clone, you can read Chapter 13 immediately after this
section (Section 8.1) with no loss of continuity in your reading.

The method clone has no parameters and should return a copy of the calling object.
The returned object should have identical data to that of the calling object, but it nor-
mally should be a different object (an identical twin or “a clone”). You usually want the
clone method to return the same kind of copy as what we have been defining for copy
constructors, which is what is known as a deep copy. (You many want to review the sub-
section entitled “Copy Constructors” in Chapter 5.)

A clone method serves very much the same purpose as a copy constructor but, as
you will see in an upcoming subsection, there are situations where a clone method
works as you want whereas a copy constructor does not perform as desired.

As with other methods inherited from the class Object, the method clone needs to
be redefined (overridden) before it performs properly.

The heading for the method clone in the class Object, and hence the correct head-
ing for the method clone in any class you define, is as follows3:

public Object clone()

You can use the copy constructor to complete the definition of the clone method as
follows for the class Sale in Display 8.1:

public Object clone()
{
 return new Sale(this);
}

This is not the officially sanctioned way to define a clone method, and in fact the Java
documentation says you should not define it this way. However, it does work correctly
and some authorities say it is acceptable. In Chapter 13 we will discuss the officially
sanctioned way of defining the method clone when we introduce the Cloneable inter-
face.

Note that although the method clone for the class Sale returns a copy of an object
of the class Sale, it always returns it as an object of type Object. For example, consider
the class Sale in Display 8.1. If we add our definition of the clone method to the class
Sale, you can make a copy of an object of type Sale as follows:

Sale original = new Sale("tire gauge", 9.95);
Sale copy = (Sale)original.clone();

Be sure to notice the type cast (Sale).

3 In the class Object, the method clone is protected, not public, but it normally makes
more sense to make it public in the classes you define.

5640_ch08.fm Page 435 Wednesday, February 11, 2004 2:26 PM

436 Chapter 8 Polymorphism and Abstract Classes

Pitfall

Pitfall

The clone method for the DiscountSale class can be defined similarly:

public Object clone()
{
 return new DiscountSale(this);
}

The definitions of the classes Sale and DiscountSale on the CD that accompanies
this book each include the method clone defined as we just decribed.

THE clone METHOD RETURN TYPE IS Object

You might be tempted to write the clone method for the class Sale (discussed in the previous
subsection) with a return type of Sale, like so:

public Sale clone()
{
 return new Sale(this);
}

If you do this, it will produce a compiler error message. The reason for the error message is that
there is an inherited method with the heading

public Object clone()

So, this definition would be overriding this inherited method, and when you override a method
definition, you cannot change the return type of the method.

LIMITATIONS OF COPY CONSTRUCTORS ✜

Copy constructors work well in most simple cases. However, there are situations where they do
not, indeed cannot, do their job. That is why Java favors using the method clone in place of
using a copy constructor. Here’s a simple example of where the copy constructor does not do its
job, but the clone method does.

For this discussion assume that the classes Sale and DiscountSale each have a clone method
added. The definitions of these clone methods are given in the previous subsection.

extra code
on CD

5640_ch08.fm Page 436 Wednesday, February 11, 2004 2:26 PM

Polymorphism 437

Suppose you have a method with the following heading (the methods Sale and DiscountSale
were defined in Displays 8.1 and 8.2):

/**
 Supposedly returns a safe copy of a. That is, if b is the
 array returned, then b[i] is supposedly an independent copy of a[1].
*/
public static Sale[] badCopy(Sale[] a)
{
 Sale[] b = new Sale[a.length];
 for (int i = 0; i < a.length; i++)
 b[i] = new Sale(a[i]);//Problem here!
 return b;
}

Now if your array a contains objects from derived classes of Sale, such as objects of type Dis-
countSale, then badCopy(a) will not return a true copy of a. Every element of the array bad-
Copy(a) will be a plain old Sale, since the Sale copy constructor only produces plain old Sale
objects; no element in badCopy(a) will be an instance of the class DiscountSale.

If we instead use the method clone, things work out as they should; the following is the correct
way to define our copy method:

public static Sale[] goodCopy(Sale[] a)
{
 Sale[] b = new Sale[a.length];
 for (int i = 0; i < a.length; i++)
 b[i] = (Sale)(a[i].clone());
 return b;
}

Because of late binding (polymorphism), a[i].clone() always means the correct version of the
clone method. If a[i] is an object created with a constructor of the class DiscountSale,
a[i].clone() will invoke the definition of clone() given in the definition of the class Dis-
countSale. If a[i] is an object created with a constructor of the class Sale, a[i].clone()
will invoke the definition of clone() given in the definition of the class Sale. (The reason for the
type cast to Sale is that clone returns its value as type Object. This type cast has nothing to do
with the issue under discussion.) This is illustrated in Display 8.5.

This may seem like a sleight of hand. After all, in the classes Sale and DiscountSale we
defined the method clone in terms of copy constructors. We reproduce the definitions of clone
from the class Sale and DiscountSale below:

//For Sale class
public Object clone()
{

5640_ch08.fm Page 437 Wednesday, February 11, 2004 2:26 PM

438 Chapter 8 Polymorphism and Abstract Classes

Display 8.5 Copy Constructor Versus clone Method (Part 1 of 2)

1 /**
2 Demonstrates where the clone method works,
3 but copy constructors do not.
4 */
5 public class CopyingDemo
6 {

7 public static void main(String[] args)
8 {
9 Sale[] a = new Sale[2];

10 a[0] = new Sale("atomic coffee mug", 130.00);
11 a[1] = new DiscountSale("invisible paint", 5.00, 10);
12 int i;

13 Sale[] b = badCopy(a);

14 System.out.println("With copy constructors:");
15 for (i = 0; i < a.length; i++)
16 {
17 System.out.println("a[" + i + "] = " + a[i]);
18 System.out.println("b[" + i + "] = " + b[i]);
19 System.out.println();
20 }
21 System.out.println();

22 b = goodCopy(a);

23 System.out.println("With clone method:");
24 for (i = 0; i < a.length; i++)
25 {
26 System.out.println("a[" + i + "] = " + a[i]);
27 System.out.println("b[" + i + "] = " + b[i]);
28 System.out.println();
29 }

30 }

31 /**
32 Supposedly returns a safe copy of a. That is, if b is the
33 array returned, then b[i] is supposedly an independent copy of a[1].
34 */

This program assumes that a clone method has
been added to the class Sale and to the class
DiscountSale.

5640_ch08.fm Page 438 Wednesday, February 11, 2004 2:26 PM

codes438.html

Polymorphism 439

Display 8.5 Copy Constructor Versus clone Method (Part 2 of 2)

35 public static Sale[] badCopy(Sale[] a)
36 {
37 Sale[] b = new Sale[a.length];
38 for (int i = 0; i < a.length; i++)
39 b[i] = new Sale(a[i]);//Problem here!
40 return b;
41 }
42
43 /**
44 Returns a safe copy of a.That is, if b is the
45 array returned, then b[i] is an independent copy of a[1].
46 */
47 public static Sale[] goodCopy(Sale[] a)
48 {
49 Sale[] b = new Sale[a.length];
50 for (int i = 0; i < a.length; i++)
51 b[i] = (Sale)(a[i].clone());
52 return b;
53 }
54 }

SAMPLE DIALOGUE

With copy constructors:
a[0] = atomic coffee mug Price and total cost = $130.0
b[0] = atomic coffee mug Price and total cost = $130.0

a[1] = invisible paint Price = $5.0 Discount 10.0%
 Total cost = $4.5
b[1] = invisible paint Price and total cost = $5.0

With clone method:
a[0] = atomic coffee mug Price and total cost = $130.0
b[0] = atomic coffee mug Price and total cost = $130.0

a[1] = invisible paint Price = $5.0 Discount 10.0%
 Total cost = $4.5
b[1] = invisible paint Price = $5.0 Discount 10.0%
 Total cost = $4.5

The copy constructor lost the discount.

The clone method did not
lose the discount.

5640_ch08.fm Page 439 Wednesday, February 11, 2004 2:26 PM

440 Chapter 8 Polymorphism and Abstract Classes

 return new Sale(this);
}

//For DiscountSale class
public Object clone()
{
 return new DiscountSale(this);
}

So, why is using the method clone any different than using a copy constructor? The difference is
simply that the method creating the copy of an element a[i] has the same name clone in all the
classes, and polymorphism works with method names. The copy constructors named Sale and
DiscountSale have different names, and polymorphism has nothing to do with methods of dif-
ferent names.

We will have more to say about the clone method in Chapter 13 when we discuss the Cloneable
interface.

Abstract Classes
It is for us, the living, rather to be dedicated here to the unfin-
ished work which they who fought here have thus far so nobly
advanced.

Abraham Lincoln, Gettysburg Address

An abstract class is a class that has some methods without complete definitions. You
cannot create an object using an abstract class constructor, but you can use an abstract
class as a base class to define a derived class.

■ ABSTRACT CLASSES

In Chapter 7 we defined a class named Employee and two of its derived classes, Hourly-
Employee and SalariedEmployee. Display 8.6 repeats the details of these class defini-
tions, which we will use in this discussion.

Suppose that when we defined the class Employee we knew that we were going to
frequently compare employees to see if they have the same pay. We might have added
the following method to the class Employee:

public boolean samePay(Employee other)
{
 return (this.getPay() == other.getPay());
}

8.2

5640_ch08.fm Page 440 Wednesday, February 11, 2004 2:26 PM

Abstract Classes 441

Display 8.6 Employee Class and Its Derived Classes (Part 1 of 2)

1 public class Employee
2 {
3 private String name;
4 private Date hireDate;

5 public Employee()

 <The body of the constructor is given in Display 7.2,
 but the details are not needed for this discussion.>

6 public boolean equals(Object otherObject)

 <The body of the method equals is the same as in Display 7.8
 of Chapter 7, but the details of the definition are not important to the current discussion.>

 <All other constructor and other method definitions are exactly the same as in Display 7.2.>

The class Employee has no method named getPay.
7 }

1 public class SalariedEmployee extends Employee
2 {
3 private double salary; //annual

4 /**
5 Returns the pay for the month.
6 */
7 public double getPay()
8 {
9 return salary/12;

10 }

11 public boolean equals(Object otherObject)

 <The rest of the definition of equals is the same as in the answer to Self-Test Exercise 20
 of Chapter 7, but the details of the definition are not important to the current discussion.>

 <All constructor and other method definitions are exactly the same as in Display 7.5.>

12 }

These show the details needed for the current discussion. You should
not need to review the entire class definitions from Chapter 7.
Complete definitions of all these classes are given in the subdirectory
for this chapter on the CD that comes with this text.

The class Date is defined in Display 4.11, but the details
are not important to the current discussion. There is no
need to review the definition of the class Date.

extra code
on CD

5640_ch08.fm Page 441 Wednesday, February 11, 2004 2:26 PM

442 Chapter 8 Polymorphism and Abstract Classes

There is, however, one problem with adding the method samePay to the class
Employee: The method samePay includes an invocation of the method getPay and the
class Employee has no getPay method. Moreover, there is no reasonable definition we
might give for a getPay method so that we could add it to the class Employee. The only
instance variables in the class Employee give an employee’s name and hire date, but give
no information about pay. To see how we should proceed, let’s compare objects of the
class Employee to employees in the real world.

Display 8.6 Employee Class and Its Derived Classes (Part 2 of 2)

1 public class HourlyEmployee extends Employee
2 {
3 private double wageRate;
4 private double hours; //for the month

5 /**
6 Returns the pay for the month.
7 */
8 public double getPay()
9 {

10 return wageRate*hours;
11 }

12 public boolean equals(Object otherObject)
13 {
14 if (otherObject == null)
15 return false;
16 else if (getClass() != otherObject.getClass())
17 return false;
18 else
19 {
20 HourlyEmployee otherHourlyEmployee =
21 (HourlyEmployee)otherObject;
22 return (super.equals(otherHourlyEmployee)
23 && (wageRate == otherHourlyEmployee.wageRate)
24 && (hours == otherHourlyEmployee.hours));
25 }
26 }

 <All constructor and other method definitions are exactly the same as in Display 7.3.>

27 }

5640_ch08.fm Page 442 Wednesday, February 11, 2004 2:26 PM

Abstract Classes 443

Every real-world employee does have some pay because every real-world employee is
either an hourly employee or a salaried employee, and the two derived classes Hourly-
Employee and SalariedEmployee do each have a getPay method. The problem is that
we do not know how to define the getPay method until we know if the employee is an
hourly employee or a salaried employee. We would like to postpone the definition of
the getPay method and only give it in each derived class of the Employee class. We
would like to simply add a note to the Employee class that says: “There will be a
method getPay for each Employee but we do not yet know how it is defined.” Java lets
us do exactly what we want. The official Java equivalent of our promissory note about
the method getPay is to make getPay an abstract method. An abstract method has a
heading just like an ordinary method, but no method body. The syntax rules of Java
require the modifier abstract and require a semicolon in place of the missing method
body, as illustrated by the following:

public abstract double getPay();

If we add this abstract method getPay to the class Employee, then we are free to add the
method samePay to the class Employee.

An abstract method can be thought of as the interface part of a method with the
implementation details omitted. Since a private method is normally only a helping
method and so not part of the interface for a programmer using the class, it follows that
it does not make sense to have a private abstract method. Java enforces this reasoning.
In Java, an abstract method cannot be private. Normally an abstract method is public,
but protected and package (default) access are allowed.

An abstract method serves a purpose, even though it is not given a full definition. It
serves as a placeholder for a method that must be defined in all (nonabstract) derived
classes. Note that in Display 8.7 the method samePay includes invocations of the
method getPay. If the abstract method getPay were omitted, this invocation of getPay
would be illegal.

ABSTRACT METHOD

An abstract method serves as a placeholder for a method that will be fully defined in a descen-
dent class. An abstract method has a complete method heading with the addition of the modifier
abstract. It has no method body but does end with a semicolon in place of a method body. An
abstract method cannot be private.

EXAMPLES:

public abstract double getPay();

public abstract void doSomething(int count);

abstract method

abstract cannot
be private

5640_ch08.fm Page 443 Wednesday, February 11, 2004 2:26 PM

444 Chapter 8 Polymorphism and Abstract Classes

A class that has at least one abstract method is called an abstract class and, in Java,
must have the modifier abstract added to the class heading. The redefined, now
abstract, class Employee is shown in Display 8.7.

An abstract class can have any number of abstract methods. In addition it can have,
and typically does have, other regular (fully defined) methods. If a derived class of an
abstract class does not give full definitions to all the abstract methods or if the derived
class adds an abstract method, then the derived class is also an abstract class and must
include the modifier abstract in its heading.

In contrast with the term abstract class, a class with no abstract methods is called a
concrete class.

Display 8.7 Employee Class as an Abstract Class

1 /**
2 Class Invariant: All objects have a name string and hire date.
3 A name string of "No name" indicates no real name specified yet.
4 A hire date of Jan 1, 1000 indicates no real hire date specified yet.
5 */
6 public abstract class Employee
7 {
8 private String name;
9 private Date hireDate;

10 public abstract double getPay();

11 public Employee()
12 {
13 name = "No name";
14 hireDate = new Date("Jan", 1, 1000); //Just a placeholder.
15 }

16 public boolean samePay(Employee other)
17 {
18 if (other == null)
19 {
20 System.out.println("Error: null Employee object.");
21 System.exit(0);
22 }
23 //else
24 return (this.getPay() == other.getPay());
25 }

 <All other constructor and other method definitions are exactly the same as in Display 7.2.
 In particular, they are not abstract methods.>

26 }

The class Date is defined in
Display 4.11, but the details are not
relevant to the current discussion
of abstract methods and classes.
There is no need to review the
definition of the class Date.

abstract class

concrete class

5640_ch08.fm Page 444 Wednesday, February 11, 2004 2:26 PM

codes444.html

Abstract Classes 445

Tip

Pitfall

YOU CANNOT CREATE INSTANCES OF AN ABSTRACT CLASS

You cannot use an abstract class constructor to create an object of the abstract class. You can
only create objects of the derived classes of the abstract class. For example, with the class
Employee defined as in Display 8.7, the following would be illegal:

Employee joe = new Employee(); //Illegal because
 //Employee is an abstract class.

But, this is no problem. The object joe could not correspond to any real-world employee. Any
real-world employee is either an hourly employee or a salaried employee. In the real world, one
cannot be just an employee. One must be either an hourly employee or a salaried employee. Still,
it is useful to discuss employees in general. In particular, we can compare employees to see if they
have the same pay, even though the way of calculating the pay might be different for the two
employees.

AN ABSTRACT CLASS IS A TYPE

You cannot create an object of an abstract class (unless it is actually an object of some concrete
descendent class). Nonetheless, it makes perfectly good sense to have a parameter of an abstract
class type such as Employee (as defined in Display 8.7). Then, an object of any of the descendent
classes of Employee can be plugged in for the parameter. It even makes sense to have a variable
of an abstract class type such as Employee, although it can only name objects of its concrete
descendent classes.

ABSTRACT CLASS

An abstract class is a class with one or more abstract methods. An abstract class must have the
modifier abstract included in the class heading, as illustrated by the example.

EXAMPLE:

public abstract class Employee
{
 private String name;
 private Date hireDate;

 public abstract double getPay();

 ...

5640_ch08.fm Page 445 Wednesday, February 11, 2004 2:26 PM

446 Chapter 8 Polymorphism and Abstract Classes

Self-Test Exercises

10. Can a method definition include an invocation of an abstract method?

11. Can you have a variable whose type is an abstract class?

12. Can you have a parameter whose type is an abstract class?

13. Is it legal to have an abstract class in which all methods are abstract?

14. The abstract class Employee (Display 8.7) uses the method definitions from Display 7.2.
After we did Display 7.2, we later gave the following improved version of equals:

public boolean equals(Object otherObject)
{
 if (otherObject == null)
 return false;
 else if (getClass() != otherObject.getClass())
 return false;
 else
 {
 Employee otherEmployee =
 (Employee)otherObject;
 return (name.equals(otherEmployee.name)
 && hireDate.equals(otherEmployee.hireDate));
 }
}

Would it be legal to replace the version of equals for the abstract class Employee with this
improved version?

15. The abstract class Employee given in Display 8.7 has a constructor (in fact, it has more
than one, although only one is shown in Display 8.7). But, using a constructor to create an
instance of an abstract class, as in the following, is illegal:

Employee joe = new Employee(); //Illegal

So, why bother to have any constructors in an abstract class? Aren’t they useless?

AN ABSTRACT CLASS IS A TYPE

You can have a parameter of an abstract class type such as the abstract class Employee defined
in Display 8.7. Then, an object of any of the concrete descendent classes of Employee can be
plugged in for the parameter. You can also have variables of an abstract class type such as
Employee, although it can only name objects of its concrete descendent classes.

5640_ch08.fm Page 446 Wednesday, February 11, 2004 2:26 PM

Answers to Self-Test Exercises 447

■ Late binding (also called dynamic binding) means that the decision of which version
of a method is appropriate is decided at run time. Java uses late binding.

■ Polymorphism means using the process of late binding to allow different objects to
use different method actions for the same method name. Polymorphism is essentially
another word for late binding.

■ You can assign an object of a derived class to a variable of its base class (or any ances-
tor class), but you cannot do the reverse.

■ If you add the modifier final to the definition of a method, that indicates that the
method may not be redefined in a derived class. If you add the modifier final to the
definition of a class, that indicates that the class may not be used as a base class to
derive other classes.

■ An abstract method serves as a placeholder for a method that will be fully defined in
a descendent class.

■ An abstract class is a class with one or more abstract methods.

■ An abstract class is designed to be used as a base class to derive other classes. You
cannot create an object of an abstract class type (unless it is an object of some con-
crete descendent class).

■ An abstract class is a type. You can have variables whose type is an abstract class and
you can have parameters whose type is an abstract type.

ANSWERS TO SELF-TEST EXERCISES

1. In essence there is no difference between the two terms. There is only a slight difference in
their usage. Late binding refers to the mechanism used to decide which method definition to
use when a method is invoked, and polymorphism refers to the fact that the same method
name can have different meanings because of late binding.

2. There would be problems well before you wrote the program in Display 8.3. Since final
means you cannot change the definition of the method bill in a derived class, the defini-
tion of the method DiscountSale would not compile. If you omit the definition of the
method bill from the class DiscountSale, the output would change to

floor mat Price and total cost = $10.0
floor mat Price = $11.0 Discount = 10.0%
 Total cost = $11.0
Discounted item is not cheaper.
cup holder Price and total cost = $9.9
cup holder Price = $11.0 Discount = 10.0%
 Total cost = $11.0
Items are not equal.

Note that all objects use the definition of bill given in the definition of Sale.

Chapter Summary

5640_ch08.fm Page 447 Wednesday, February 11, 2004 2:26 PM

448 Chapter 8 Polymorphism and Abstract Classes

3. It would not be legal to add it to any class definition because the class Sale has no method
named getDiscount and so the invocation

theSale.getDiscount()

is not allowed. If the type of the parameter were changed from Sale to DiscountSale, it
would then be legal.

4. public boolean equals(Object otherObject)
{
 if (otherObject == null)
 return false;
 else if (getClass() != otherObject.getClass())
 return false;
 else
 {
 DiscountSale otherDiscountSale =
 (DiscountSale)otherObject;
 return (super.equals(otherDiscountSale)
 && discount == otherDiscountSale.discount);
 }
}

5. The definition of toString used always depends on the object and not on any type cast.
So, the definition used is the same as without the added type cast; that is, the definition of
toString that is used is the one given in DiscountSale.

6. It would not be legal to add it to any class definition because the parameter is of type Sale
and Sale has no method named getDiscount. If the parameter type were changed to
DiscountSale, it would then be legal to add it to any class definition.

7. ds was changed to map Price $ 5.0 discount 0.0%
Total cost $5.0

8. ds was not changed.

9. The output would be the following (the main change from Display 8.4 is shown in red):

This is the Sale class.
This is the DiscountSale class.
No surprises so far, but wait.
discount2 is a DiscountSale object in a Sale variable.
Which definition of announcement() will it use?
This is the DiscountSale class.
Did it used the Sale version of announcement()?

10. Yes. See Display 8.7.

5640_ch08.fm Page 448 Wednesday, February 11, 2004 2:26 PM

Programming Projects 449

11. Yes, you can have a variable whose type is an abstract class.

12. Yes, you can have a parameter whose type is an abstract class.

13. Yes, it is legal to have an abstract class in which all methods are abstract.

14. Yes, it would be legal to replace the version of equals for the abstract class Employee with
this improved version. In fact, the version of Employee on the accompanying CD does use
the improved version of equals.

15. No, you can still use constructors to hold code that might be useful in derived classes. The
constructors in the derived classes can, in fact must, include invocations of constructors in
the base (abstract) class. (Recall the use of super as a name for the base class constructor.)

PROGRAMMING PROJECTS

1. Consider a graphics system that has classes for various figures, say rectangles, boxes, trian-
gles, circles, and so on. For example, a rectangle might have data members height, width,
and center point, while a box and circle might have only a center point and an edge length
or radius, respectively. In a well-designed system these would be derived from a common
class, Figure. You are to implement such a system.

The class Figure is the base class. You should add only Rectangle and Triangle classes
derived from Figure. Each class has stubs for methods erase and draw. Each of these
methods outputs a message telling the name of the class and what method has been called.
Since these are just stubs, they do nothing more than output this message. The method
center calls the erase and draw methods to erase and redraw the figure at the center.
Since you have only stubs for erase and draw, center will not do any “centering” but will
call the methods erase and draw, which will allow you to see which versions of draw and
center it calls. Also, add an output message in the method center that announces that
center is being called. The methods should take no arguments. Also, define a demonstra-
tion program for your classes.

For a real example, you would have to replace the definition of each of these methods with
code to do the actual drawing. You will be asked to do this in Programming Project 2.

2. Flesh out Programming Project 1. Give new definitions for the various constructors and
methods center, draw, and erase of the class Figure; draw and erase of the class Tri-
angle; and draw and erase of the class Rectangle. Use character graphics; that is, the
various draw methods will place regular keyboard characters on the screen in the desired
shape. Use the character '*' for all the character graphics. That way the draw methods
actually draw figures on the screen by placing the character '*' at suitable locations on the
screen. For the erase methods, you can simply clear the screen (by outputting blank lines

5640_ch08.fm Page 449 Wednesday, February 11, 2004 2:26 PM

project449a.html
project449b.html

450 Chapter 8 Polymorphism and Abstract Classes

or by doing something more sophisticated). There are a lot of details in this project and
you will have to decide on some of them on your own.

3. Define a class named MultiItemSale that represents a sale of multiple items of type Sale
given in Display 8.1 (or of the types of any of its descendent classes). The class MultiItem-
Sale will have an instance variable whose type is Sale[], which will be used as a partially
filled array. There will also be another instance variable of type int that keeps track of how
much of this array is currently used. The exact details on methods and other instance vari-
ables, if any, are up to you. Use this class in a program that obtains information for items of
type Sale and of type DiscountSale (Display 8.2) and computes the total bill for the list
of items sold.

5640_ch08.fm Page 450 Wednesday, February 11, 2004 2:26 PM

project450.html

	code links 2:
	code links 3:
	code links 4:
	code links 5:
	code links 1:
	code links 6:
	program project 8:
	1:
	2:
	3:

