

CHAPTER

7

Inheritance

7.1 INHERITANCE BASICS 372

Derived Classes 373

Overriding a Method Definition 383

Pitfall: Overriding versus Overloading 383

The

super Constructor 385

The

this Constructor 386

Tip: An Object of a Derived Class Has More than
One Type 387

Pitfall: The Terms “Subclass” and “Superclass” 388

7.2 ENCAPSULATION AND INHERITANCE 390

Pitfall: Use of Private Instance Variables from the
Base Class 391

Pitfall: Private Methods Are Effectively Not
Inherited 392

Protected and Package Access 393

Pitfall: Forgetting about the Default Package 395

Pitfall: A Restriction on Protected Access

✜ 396

7.3 PROGRAMMING WITH INHERITANCE 398

Tip: “is a” Versus “has a” 398

Tip: Static Variables Are Inherited 399

Access to a Redefined Base Method 399

Pitfall: You Cannot Use Multiple

supers 400

The Class

Object 402

The Right Way to Define

equals 402

Tip:

getClass versus

instanceof

✜ 405

CHAPTER SUMMARY 409
ANSWERS TO SELF-TEST EXERCISES 410
PROGRAMMING PROJECTS 413

5640_ch07.fm Page 371 Wednesday, February 11, 2004 2:23 PM

7

 Inheritance

Like mother, like daughter.

Common saying

INTRODUCTION

Object-oriented programming (OOP) is a popular and powerful program-
ming philosophy. One of the main techniques of OOP is known as

inherit-
ance.

 Inheritance

 means that a very general form of a class can be defined and
compiled. Later, more specialized versions of that class may be defined by
starting with the already defined class and adding more specialized instance
variables and methods. The specialized classes are said to

inherit

 the methods
and instance variables of the previously defined general class. In this chapter
we cover inheritance in general and more specifically how it is realized in Java.

PREREQUISITES

This chapter does not use any material on arrays from Chapter 6. It does
require Chapters 1 through 5 with the exception that most of the chapter does
not require Section 5.4 on packages and

javadoc

. The subsection “Protected
and Package Access” is the only part of this chapter that requires anything
from Section 5.4 and it requires only the material on packages and not any
material on

javadoc

. The subsection “Protected and Package Access” can be
omitted without any loss of continuity in reading this chapter.

Inheritance Basics

If there is anything that we wish to change in the child, we
should first examine it and see whether it is not something
that could better be changed in ourselves.

Carl Gustav Jung,

The Integration of the Personality

Inheritance is the process by which a new class—known as a

derived class

—is
created from another class, called the

base class

. A derived class automatically
has all the instance variables and all the methods that the base class has, and
can have additional methods and/or additional instance variables.

7.1

5640_ch07.fm Page 372 Wednesday, February 11, 2004 2:23 PM

Inheritance Basics 373

■ DERIVED CLASSES

Suppose we are designing a record-keeping program that has records for salaried
employees and hourly employees. There is a natural hierarchy for grouping these
classes. These are all classes of people who share the property of being employees.

Employees who are paid an hourly wage are one subset of employees. Another sub-
set consists of salaried employees who are paid a fixed wage each month. Although the
program may not need any type corresponding to the set of all employees, thinking in
terms of the more general concept of employees can be useful. For example, all employ-
ees have a name and a hire date (when they started working for the company), and the
methods for setting and changing names and hire dates will be the same for salaried
and hourly employees. The classes for hourly employees and salaried employees may be
further subdivided as diagrammed in Display 7.1.

Within Java you can define a class called

Employee

 that includes all employees,
whether salaried or hourly, and then use this class to define classes for hourly employees
and salaried employees. You can then, in turn, use classes like

HourlyEmployee

 to define
classes like

PartTimeHourlyEmployee

, and so forth.

Display 7.2 shows our definition for the class

Employee

. The class

Employee

 is a
pretty ordinary class much like earlier classes we have seen. What will be interesting
about the class

Employee

 is how we use it to create a class for hourly employees and a

Display 7.1 A Class Hierarchy

PartTimeEmployee TechnicalStaff Executive

SalariedEmployeeHourlyEmployee

Employee

FullTimeHourlyEmployee

Engineer Technician ClericalStaff

5640_ch07.fm Page 373 Wednesday, February 11, 2004 2:23 PM

374 Chapter 7 Inheritance

Display 7.2 The Base Class Employee (Part 1 of 2)

1 /**
2 Class Invariant: All objects have a name string and hire date.
3 A name string of "No name" indicates no real name specified yet.
4 A hire date of Jan 1, 1000 indicates no real hire date specified yet.
5 */
6 public class Employee
7 {
8 private String name;
9 private Date hireDate;

10 public Employee()
11 {
12 name = "No name";
13 hireDate = new Date("Jan", 1, 1000); //Just a placeholder.
14 }

15 /**
16 Precondition: Neither theName nor theDate is null.
17 */
18 public Employee(String theName, Date theDate)
19 {
20 if (theName == null || theDate == null)
21 {
22 System.out.println("Fatal Error creating employee.");
23 System.exit(0);
24 }
25 name = theName;
26 hireDate = new Date(theDate);
27 }

28 public Employee(Employee originalObject)
29 {
30 name = originalObject.name;
31 hireDate = new Date(originalObject.hireDate);
32 }

33 public String getName()
34 {
35 return name;
36 }

37 public Date getHireDate()
38 {
39 return new Date(hireDate);
40 }

The class Date is defined in
Display 4.11.

5640_ch07.fm Page 374 Wednesday, February 11, 2004 2:23 PM

codes374.html

Inheritance Basics 375

Display 7.2 The Base Class Employee (Part 2 of 2)

41 /**
42 Precondition newName is not null.
43 */
44 public void setName(String newName)
45 {
46 if (newName == null)
47 {
48 System.out.println("Fatal Error setting employee name.");
49 System.exit(0);
50 }
51 else
52 name = newName;
53 }

54 /**
55 Precondition newDate is not null.
56 */
57 public void setHireDate(Date newDate)
58 {
59 if (newDate == null)
60 {
61 System.out.println("Fatal Error setting employee hire date.");
62 System.exit(0);
63 }
64 else
65 hireDate = new Date(newDate);
66 }

67 public String toString()
68 {
69 return (name + " " + hireDate.toString());
70 }

71 public boolean equals(Employee otherEmployee)
72 {
73 return (name.equals(otherEmployee.name)
74 && hireDate.equals(otherEmployee.hireDate));
75 }
76 }

5640_ch07.fm Page 375 Wednesday, February 11, 2004 2:23 PM

376 Chapter 7 Inheritance

class for salaried employees. It is legal to create an object of the class

Employee

, but our
reason for defining the class

Employee

 is so that we can define derived classes for differ-
ent kinds of employees.

Display 7.3 contains the definition of a class for hourly employees. An hourly
employee is an employee, so we define the class

HourlyEmployee

 to be a

derived

 class of
the class

Employee

. A derived

 class

 is a class defined by adding instance variables and
methods to an existing class. The existing class that the derived class is built upon is
called the base class

. In our example,

Employee

 is the base class and

HourlyEmployee

 is
the derived class. As you can see in Display 7.3, the way we indicate that

HourlyEm-

ployee

 is a derived class of

Employee

 is by including the phrase

extends Employee

 on
the first line of the class definition, like so:

public class HourlyEmployee extends Employee

A derived class is also called a subclass

, in which case the base class is usually called a
superclass

. However, we prefer to use the terms

derived class

 and

base class.

When you define a derived class, you give only the added instance variables and the
added methods. For example, the class

HourlyEmployee

 has all the instance variables
and all the methods of the class

Employee

, but you do not mention them in the defini-
tion of

HourlyEmployee

. Every object of the class

HourlyEmployee

 has instance vari-
ables called

name

 and

hireDate

, but you do not specify the instance variable

name

 or the
instance variable

hireDate

 in the definition of the class

HourlyEmployee

. The class

HourlyEmployee

 (or any other derived class) is said to inherit

 the instance variables and
methods of the base class that it extends. For this reason, the topic of derived classes is
called inheritance

.

Just as it inherits the instance variables of the class

Employee

, the class

HourlyEm-

ployee

 inherits all the methods from the class

Employee

. So, the class

HourlyEmployee

inherits the methods

getName

,

getHireDate

,

setName

, and

setHireDate

, from the class

Employee

.

For example, suppose you create a new object of the class

HourlyEmployee

 as follows:

HourlyEmployee joe = new HourlyEmployee();

Then, the name of the object

joe

 can be changed using the method

setName

, which the
class

HourlyEmployee

 inherited from the class

Employee

. The inherited method

set-

Name

 is used just like any other method; for example:

joe.setName("Josephine");

A small demonstration of this is given in Display 7.4.

Display 7.5 contains the definition of the class SalariedEmployee, which is also
derived from the class Employee. The class SalariedEmployee inherits all the instance
variables and methods of the class Employee. Inheritance allows you to reuse code, such
as the code in the class Employee, without needing to literally copy the code into the
definitions of the derived classes, such as HourlyEmployee and SalariedEmployee.

derived class

base class

extends

subclass and
superclass

inheritance

5640_ch07.fm Page 376 Wednesday, February 11, 2004 2:23 PM

Inheritance Basics 377

Display 7.3 The Derived Class HourlyEmployee (Part 1 of 3)

1 /**
2 Class Invariant: All objects have a name string, hire date, nonnegative
3 wage rate, and nonnegative number of hours worked. A name string of
4 "No name" indicates no real name specified yet. A hire date of Jan 1, 1000
5 indicates no real hire date specified yet.
6 */
7 public class HourlyEmployee extends Employee
8 {
9 private double wageRate;

10 private double hours; //for the month

11 public HourlyEmployee()
12 {
13 super();
14 wageRate = 0;
15 hours = 0;
16 }

17 /**
18 Precondition: Neither theName nor theDate is null;
19 theWageRate and theHours are nonnegative.
20 */
21 public HourlyEmployee(String theName, Date theDate,
22 double theWageRate, double theHours)
23 {
24 super(theName, theDate);
25 if ((theWageRate >= 0) && (theHours >= 0))
26 {
27 wageRate = theWageRate;
28 hours = theHours;
29 }
30 else
31 {
32 System.out.println(
33 "Fatal Error: creating an illegal hourly employee.");
34 System.exit(0);
35 }
36 }

37 public HourlyEmployee(HourlyEmployee originalObject)
38 {
39 super(originalObject);
40 wageRate = originalObject.wageRate;
41 hours = originalObject.hours;
42 }

It will take the rest of Section 7.1
to explain this class definition.

If this line is omitted, Java will still invoke the no-
argument constructor for the base class.

An object of the class
HourlyEmployee is also an
instance of the class Employee.

5640_ch07.fm Page 377 Wednesday, February 11, 2004 2:23 PM

codes377.html

378 Chapter 7 Inheritance

Display 7.3 The Derived Class HourlyEmployee (Part 2 of 3)

43 public double getRate()
44 {
45 return wageRate;
46 }

47 public double getHours()
48 {
49 return hours;
50 }

51 /**
52 Returns the pay for the month.
53 */
54 public double getPay()
55 {
56 return wageRate*hours;
57 }

58 /**
59 Precondition: hoursWorked is nonnegative.
60 */
61 public void setHours(double hoursWorked)
62 {
63 if (hoursWorked >= 0)
64 hours = hoursWorked;
65 else
66 {
67 System.out.println("Fatal Error: Negative hours worked.");
68 System.exit(0);
69 }
70 }

71 /**
72 Precondition: newWageRate is nonnegative.
73 */
74 public void setRate(double newWageRate)
75 {
76 if (newWageRate >= 0)
77 wageRate = newWageRate;
78 else
79 {
80 System.out.println("Fatal Error: Negative wage rate.");
81 System.exit(0);
82 }
83 }

5640_ch07.fm Page 378 Wednesday, February 11, 2004 2:23 PM

Inheritance Basics 379

DERIVED CLASS (SUBCLASS)

You define a derived class by starting with another already defined class and adding (and/or
changing) methods, instance variables, and static variables. The class you start with is called the
base class. The derived class inherits all the public methods, all the public and private instance
variables, and all the public and private static variables from the base class and can add more
instance variables, more static variables, and/or more methods. So, of the things we have seen
thus far, the only members not inherited are private methods. (As discussed a little later in this
chapter, the derived class definition can also change the definition of an inherited method.)

A derived class is also called a subclass, in which case the base class is usually called a super-
class.

SYNTAX:

public class Derived_Class_Name extends Base_Class_Name
{
 Declarations_of_Added_Static_Variables
 Declarations_of_Added_Instance_Variables
 Definitions_of_Added__And_Overridden_Methods
}

EXAMPLE:

See Displays 7.3 and 7.5.

Display 7.3 The Derived Class HourlyEmployee (Part 3 of 3)

84 public String toString()
85 {
86 return (getName() + " " + getHireDate().toString()
87 + "\n$" + wageRate + " per hour for " + hours + " hours");
88 }

89 public boolean equals(HourlyEmployee other)
90 {
91 return (getName().equals(other.getName())
92 && getHireDate().equals(other.getHireDate())
93 && wageRate == other.wageRate
94 && hours == other.hours);
95 }
96 }

We will show you a better way to define
equals later in this chapter.

The method toString is overridden so it is different in the derived
class HourlyEmployee than it is in the base class Employee.

5640_ch07.fm Page 379 Wednesday, February 11, 2004 2:23 PM

380 Chapter 7 Inheritance

INHERITED MEMBERS

A derived class automatically has all the instance variables, all the static variables, and all the
public methods of the base class. These members from the base class are said to be inherited.
These inherited methods and inherited instance and static variables are, with one exception, not
mentioned in the definition of the derived class, but they are automatically members of the
derived class. As explained later in this chapter, you can give a definition for an inherited method
in the definition of the derived class; this will redefine the meaning of the method for the derived
class.

Display 7.4 Inheritance Demonstration

1 public class InheritanceDemo
2 {
3 public static void main(String[] args)
4 {
5 HourlyEmployee joe = new HourlyEmployee("Joe Worker",
6 new Date("Jan", 1, 2004), 50.50, 160);

7 System.out.println("joe's longer name is " + joe.getName());

8 System.out.println("Changing joe's name to Josephine.");
9 joe.setName("Josephine");

10 System.out.println("joe's record is as follows:");
11 System.out.println(joe);
12 }
13 }

SAMPLE DIALOGUE

joe's longer name is Joe Worker
Changing joe's name to Josephine.
joe's record is as follows:
Josephine Jan 1, 2004
$50.5 per hour for 160 hours

The methods getName and setName are
inherited from the base class Employee.

5640_ch07.fm Page 380 Wednesday, February 11, 2004 2:23 PM

codes380.html

Inheritance Basics 381

Display 7.5 The Derived Class SalariedEmployee (Part 1 of 2)

1 /**
2 Class Invariant: All objects have a name string, hire date,
3 and nonnegative salary. A name string of "No name" indicates
4 no real name specified yet. A hire date of Jan 1, 1000 indicates
5 no real hire date specified yet.
6 */
7 public class SalariedEmployee extends Employee
8 {
9 private double salary; //annual

10 public SalariedEmployee()
11 {
12 super();
13 salary = 0;
14 }

15 /**
16 Precondition: Neither theName nor theDate are null;
17 theSalary is nonnegative.
18 */
19 public SalariedEmployee(String theName, Date theDate, double theSalary)
20 {
21 super(theName, theDate);
22 if (theSalary >= 0)
23 salary = theSalary;
24 else
25 {
26 System.out.println("Fatal Error: Negative salary.");
27 System.exit(0);
28 }
29 }

30 public SalariedEmployee(SalariedEmployee originalObject)
31 {
32 super(originalObject);
33 salary = originalObject.salary;
34 }

35 public double getSalary()
36 {
37 return salary;
38 }

An object of the class SalariedEmployee
is also an object of the class Employee.

It will take the rest of Section 7.1 to fully
explain this class definition.

If this line is omitted, Java will still invoke the
no-argument constructor for the base class.

5640_ch07.fm Page 381 Wednesday, February 11, 2004 2:23 PM

codes381.html

382 Chapter 7 Inheritance

PARENT AND CHILD CLASSES

A base class is often called the parent class. A derived class is then called a child class. This anal-
ogy is often carried one step further. A class that is a parent of a parent of a parent of another
class (or some other number of “parent of” iterations) is often called an ancestor class. If class A
is an ancestor of class B, then class B is often called a descendent of class A.

Display 7.5 The Derived Class SalariedEmployee (Part 2 of 2)

39 /**
40 Returns the pay for the month.
41 */
42 public double getPay()
43 {
44 return salary/12;
45 }

46 /**
47 Precondition: newSalary is nonnegative.
48 */
49 public void setSalary(double newSalary)
50 {
51 if (newSalary >= 0)
52 salary = newSalary;
53 else
54 {
55 System.out.println("Fatal Error: Negative salary.");
56 System.exit(0);
57 }
58 }

59 public String toString()
60 {
61 return (getName() + " " + getHireDate().toString()
62 + "\n$" + salary + " per year");
63 }

64 public boolean equals(SalariedEmployee other)
65 {
66 return (getName().equals(other.getName())
67 && getHireDate().equals(other.getHireDate())
68 && salary == other.salary);
69 }
70 }

We will show you a better way to
define equals later in this chapter.

parent class
child class

ancestor class
descendent class

5640_ch07.fm Page 382 Wednesday, February 11, 2004 2:23 PM

Inheritance Basics 383

Pitfall

■ OVERRIDING A METHOD DEFINITION

The definition of an inherited method can be changed in the definition of a derived class
so that it has a meaning in the derived class that is different from what it is in the base
class. This is called overriding the definition of the inherited method. For example, the
methods toString and equals are overridden (redefined) in the definition of the
derived class HourlyEmployee. They are also overridden in the class SalariedEmployee.
To override a method definition, simply give the new definition of the method in the
class definition, just as you would do with a method that is added in the derived class.

OVERRIDING VERSUS OVERLOADING

Do not confuse overriding (that is, redefining) a method definition in a derived class with over-
loading a method name. When you override a method definition, the new method definition
given in the derived class has the exact same number and types of parameters. On the other hand,
if the method in the derived class were to have a different number of parameters or a parameter of
a different type from the method in the base class, then the derived class would have both meth-
ods. That would be overloading. For example, suppose we added the following method to the
definition of the class HourlyEmployee (Display 7.3):

public void setName(String firstName, String lastName)
{
 name = firstName + " " + lastName;
}

OVERRIDING A METHOD DEFINITION

A derived class inherits methods that belong to the base class. However, if a derived class requires
a different definition for an inherited method, the method may be redefined in the derived class.
This is called overriding the method definition.

THE final MODIFIER

If you add the modifier final to the definition of a method, that indicates that the method may
not be redefined in a derived class. If you add the modifier final to the definition of a class, that
indicates that the class may not be used as a base class to derive other classes. We will say more
about the final modifier in Chapter 8.

overriding

5640_ch07.fm Page 383 Wednesday, February 11, 2004 2:23 PM

384 Chapter 7 Inheritance

Self-Test Exercises

The class HourlyEmployee would then have this two-argument method setName and it would
also inherit the following one-argument method setName from the base class Employee:

public void setName(String newName)
{
 if (newName == null)
 {
 System.out.println("Fatal Error setting employee name.");
 System.exit(0);
 }
 else
 name = newName;
}

The class HourlyEmployee would have two methods named setName. This would be overload-
ing the method name setName.

On the other hand, both the class Employee and the class HourlyEmployee define a method
with the following method heading:

public String toString()

In this case, the class HourlyEmployee has only one method named toString(), but the def-
inition of the method toString() in the class HourlyEmployee is different from the definition
of toString() in the class Employee; the method toString() has been overridden (that is,
redefined).

If you get overriding and overloading confused, you do have one consolation. They are both
legal.

1. Suppose the class named DiscountSale is a derived class of a class called Sale. Suppose
the class Sale has instance variables named price and numberOfItems. Will an object of
the class DiscountSale also have instance variables named price and numberOfItems?

2. Suppose the class named DiscountSale is a derived class of a class called Sale, and sup-
pose the class Sale has public methods named getTotal and getTax. Will an object of
the class DiscountSale have methods named getTotal and getTax? If so, do these
methods have to perform the exact same actions in the class DiscountSale as in the class
Sale?

3. Suppose the class named DiscountSale is a derived class of a class called Sale, and sup-
pose the class Sale has a method with the following heading and no other methods named
getTax:

public double getTax()

5640_ch07.fm Page 384 Wednesday, February 11, 2004 2:23 PM

Inheritance Basics 385

And suppose the definition of the class DiscountSale has a method definition with the
following heading and no other method definitions for methods named getTax:

public double getTax(double rate)

How many methods named getTax will the class DiscountSale have and what are their
headings?

4. The class HourlyEmployee (Display 7.3) has methods named getName and getRate
(among others). Why does the definition of the class HourlyEmployee contain a definition
of the method getRate but no definition of the methods getName?

■ THE super CONSTRUCTOR

You can invoke a constructor of the base class within the definition of a derived class
constructor. A constructor for a derived class uses a constructor from the base class in a
special way. A constructor for the base class normally initializes all the data inherited
from the base class. Thus, a constructor for a derived class begins with an invocation of
a constructor for the base class.

There is a special syntax for invoking the base class constructor that is illustrated by
the constructor definitions for the class HourlyEmployee given in Display 7.3. In what
follows we have reproduced the beginning of one of the constructor definitions for the
class HourlyEmployee taken from that display:

public HourlyEmployee(String theName, Date theDate,
 double theWageRate, double theHours)
{
 super(theName, theDate);
 if ((theWageRate >= 0) && (theHours >= 0))
 {
 wageRate = theWageRate;
 hours = theHours;
 }
 else
 ...

The line

super(theName, theDate);

is a call to a constructor for the base class, which in this case is a call to a constructor for
the class Employee.

There are some restrictions on how you can use the base class constructor call super.
You cannot use an instance variable as an argument to super. Also, the call to the base
class constructor (super) must always be the first action taken in a constructor defini-
tion. You cannot use it later in the definition of a constructor.

super

5640_ch07.fm Page 385 Wednesday, February 11, 2004 2:23 PM

386 Chapter 7 Inheritance

 Notice that you use the keyword super to call the constructor of the base class.
You do not use the name of the constructor; you do not use

Employee(theName, theDate); //ILLEGAL

If a constructor definition for a derived class does not include an invocation of a con-
structor for the base class, then the no-argument constructor of the base class construc-
tor will be invoked automatically as the first action of the derived class constructor. So,
the following definition of the no-argument constructor for the class HourlyEmployee
(with super omitted) is equivalent to the version we gave in Display 7.3:

public HourlyEmployee()
{
 wageRate = 0;
 hours = 0;
}

A derived class object has all the instance variables of the base class. These inherited
instance variables should be initialized, and the base class constructor is the most con-
venient place to initialize these inherited instance variables. That is why you should
always include a call to one of the base class constructors when you define a constructor
for a derived class. As already noted, if you do not include a call to a base class con-
structor (using super), then the no-argument constructor of the base class is called
automatically. (If there is no no-argument constructor for the base class, that is an error
condition.)

■ THE this CONSTRUCTOR

When defining a constructor, it is sometimes convenient to be able to call one of the
other constructors in the same class. You can use the keyword this as a method name
to invoke a constructor in the same class. This use of this is similar to the use of super,
but with this, the call is to a constructor of the same class, not to a constructor for the

CALL TO A BASE CLASS CONSTRUCTOR

Within the definition of a constructor for a class, you can use super as a name for a constructor of
the base class. Any invocation of super must be the first action taken by the constructor.

EXAMPLE:

public SalariedEmployee(SalariedEmployee originalObject)
{
 super(originalObject); //Invocation of base class constructor.
 salary = originalObject.salary;
}

this

5640_ch07.fm Page 386 Wednesday, February 11, 2004 2:23 PM

Inheritance Basics 387

Tip

base class. For example, consider the following alternate, and equivalent, definition of
the no-argument constructor for the class HourlyEmployee (from Display 7.3):

public HourlyEmployee()
{
 this("No name", new Date("Jan", 1, 1000), 0, 0);
}

The line with this is an invocation of the constructor with the following heading:

public HourlyEmployee(String theName, Date theDate,
 double theWageRate, double theHours)

The restrictions on how you can use the base class constructor call super also apply
to the this constructor. You cannot use an instance variable as an argument to this.
Also, any call to the constructor this must always be the first action taken in a con-
structor definition. Thus, a constructor definition cannot contain both an invocation
of super and an invocation of this. If you want to include both a call to super and a
call to this, use a call with this, and have the constructor that is called with this have
super as its first action.

AN OBJECT OF A DERIVED CLASS HAS MORE THAN ONE TYPE

An object of a derived class has the type of the derived class, and it also has the type of the base
class, and more generally, has the type of every one of its ancestor classes. For example, consider
the following copy constructor definition from the class HourlyEmployee (Display 7.3):

public HourlyEmployee(HourlyEmployee originalObject)
{
 super(originalObject);

CALL TO ANOTHER CONSTRUCTOR IN THE SAME CLASS

Within the definition of a constructor for a class, you can use this as a name for another con-
structor in the same class. Any invocation of this must be the first action taken by the con-
structor.

EXAMPLE:

public HourlyEmployee()
{
 this("No name", new Date("Jan", 1, 1000), 0, 0);
}

5640_ch07.fm Page 387 Wednesday, February 11, 2004 2:23 PM

388 Chapter 7 Inheritance

Pitfall

 wageRate = originalObject.wageRate;
 hours = originalObject.hours;
}

The line

super(originalObject);

is an invocation of a constructor for the base class Employee. The class Employee has no con-
structor with a parameter of type HourlyEmployee, but originalObject is of type Hourly-
Employee. Fortunately, every object of type HourlyEmployee is also of type Employee. So,
this invocation of super is an invocation of the copy constructor for the class Employee.

The fact that every object not only is of its own type but is also of the type of its ancestor classes
simply reflects what happens in the everyday world. An hourly employee is an employee as well
as an hourly employee. This sometimes is referred to as the “is a” relationship: For example, an
HourlyEmployee is an Employee.

Display 7.6 contains a program demonstrating that an HourlyEmployee and a SalariedEm-
ployee are also Employee objects. The method showEmployee requires an argument of type
Employee. The objects joe and sam are of type Employee because they are instances of classes
derived from the class Employee and so they are suitable arguments for showEmployee.

THE TERMS “SUBCLASS” AND “SUPERCLASS”

Many programmers and authors use the term subclass for a derived class and superclass for its
base class (or any of its ancestor classes). This is logical. For example, the collection of all hourly
employees in the world is a subclass of all employees. Similarly, the collection of all objects of
type HourlyEmployee is a subcollection of the collection of all objects of the class Employee.
As you add more instance variables and methods, you restrict the number of objects that can sat-
isfy the class definition. Despite this logic, people often reverse the terms subclass and superclass.

AN OBJECT OF A DERIVED CLASS HAS MORE THAN ONE TYPE

An object of a derived class has the type of the derived class, and it also has the type of the base
class. More generally, a derived class has the type of every one of its ancestor classes. So, you can
assign an object of a derived class to a variable of any ancestor type (but not the other way
around). You can plug in a derived class object for a parameter of any of its ancestor types. More
generally, you can use a derived class object anyplace you can use an object of any of its ancestor
types.

is a

subclass and
superclass

5640_ch07.fm Page 388 Wednesday, February 11, 2004 2:23 PM

Inheritance Basics 389

Remember that these terms refer to the collections of objects of the derived class and the base
class and not to the number of instance variables or methods. A derived class is a subclass (not a
superclass) of its base class. Another way to remember which is a superclass is as follows: Recall
that the super constructor invocation is an invocation of the base class and so the base class is
the superclass.

Display 7.6 An Object Belongs to Multiple Classes

1 public class IsADemo
2 {
3 public static void main(String[] args)
4 {
5 SalariedEmployee joe = new SalariedEmployee("Josephine",
6 new Date("Jan", 1, 2004), 100000);
7 HourlyEmployee sam = new HourlyEmployee("Sam",
8 new Date("Feb", 1, 2003), 50.50, 40);

9 System.out.println("joe's longer name is " + joe.getName());

10 System.out.println("showEmployee(joe) invoked:");
11 showEmployee(joe);

12 System.out.println("showEmployee(sam) invoked:");
13 showEmployee(sam);

14 }

15 public static void showEmployee(Employee employeeObject)
16 {
17 System.out.println(employeeObject.getName());
18 System.out.println(employeeObject.getHireDate());
19 }
20 }

SAMPLE DIALOGUE

joe's longer name is Josephine
showEmployee(joe) invoked:
Josephine
Jan 1, 2004
showEmployee(sam) invoked:
Sam
Feb 1, 2003

An HourlyEmployee is an Employee.

A SalariedEmployee
is an Employee.

5640_ch07.fm Page 389 Wednesday, February 11, 2004 2:23 PM

codes389.html

390 Chapter 7 Inheritance

Self-Test Exercises

5. Is the following program legal? The relevant classes are defined in Displays 7.2, 7.3,
and 7.5.

public class EmployeeDemo
{
 public static void main(String[] args)
 {
 HourlyEmployee joe =
 new HourlyEmployee("Joe Young",
 new Date("Feb", 1, 2004), 10.50, 40);
 SalariedEmployee boss =
 new SalariedEmployee("Mr. Big Shot",
 new Date("Jan", 1, 1999), 100000);
 printName(joe);
 printName(boss);
 }

 public static void printName(Employee object)
 {
 System.out.println(object.getName());
 }
}

6. Give a definition for a class

TitledEmployee

 that is a derived class of the base class

Sala-

riedEmployee

 given in Display 7.5. The class

TitledEmployee

 has one additional
instance variable of type

String

 called

title

. It also has two additional methods:

getTi-

tle

, which takes no arguments and returns a

String

, and

setTitle

, which is a

void

method that takes one argument of type

String

. It also overrides (redefines) the method
definition for

getName

, so that the string returned includes the title as well as the name of
the employee.

Encapsulation and Inheritance

Ignorance is bliss.

Proverb

This section is a continuation of Section 7.1 and uses the same example classes we used
in Section 7.1. In this section we consider how the information-hiding facilities of Java,
primarily the

private

 modifier, interact with inheritance.

7.2

5640_ch07.fm Page 390 Tuesday, February 17, 2004 5:29 PM

Encapsulation and Inheritance 391

Pitfall

USE OF PRIVATE INSTANCE VARIABLES FROM THE BASE CLASS

An object of the class HourlyEmployee (Display 7.3) inherits, among other things, an instance
variable called name from the class Employee (Display 7.2). For example, the following would set
the value of the instance variable name of the HourlyEmployee object joe to "Josephine":

joe.setName("Josephine");

But, you must be a bit careful about how you manipulate inherited instance variables such as
name. The instance variable name of the class HourlyEmployee was inherited from the class
Employee, but the instance variable name is a private instance variable in the definition of the
class Employee. That means that name can only be accessed by name within the definition of a
method in the class Employee. An instance variable (or method) that is private in a base class is
not accessible by name in the definition of a method in any other class, not even in a method def-
inition of a derived class.

For example, notice the following method definition taken from the definition of the class Hour-
lyEmployee in Display 7.3:

public String toString()
{
 return (getName() + " " + getHireDate().toString()
 + "\n$" + wageRate + " per hour for " + hours + " hours");
}

You might wonder why we needed to use the methods getName and getHireDate. You might
be tempted to rewrite the method definition as follows:

public String toString() //Illegal version
{
 return (name + " " + hireDate.toString()
 + "\n$" + wageRate + " per hour for " + hours + " hours");
}

As the comment indicates, this will not work. The instance variables name and hireDate are pri-
vate instance variables in the class Employee, and although a derived class like HourlyEm-
ployee inherits these instance variables, it cannot access them directly. You must instead use
some public methods to access the instance variable name or hireDate, as we did in Display 7.3.

In the definition of a derived class, you cannot mention a private inherited instance variable by
name. You must instead use public accessor and mutator methods (such as getName and set-
Name) that were defined in the base class.

The fact that a private instance variable of a base class cannot be accessed in the definition of a
method of a derived class often seems wrong to people. After all, if you are an hourly employee
and you want to change your name, nobody says, “Sorry, name is a private instance variable of
the class Employee.” After all, if you are an hourly employee, you are also an employee. In Java,

5640_ch07.fm Page 391 Wednesday, February 11, 2004 2:23 PM

392 Chapter 7 Inheritance

Pitfall

Self-Test Exercises

this is also true; an object of the class HourlyEmployee is also an object of the class Employee.
However, the laws on the use of private instance variables and methods must be as we described,
or else they would be compromised. If private instance variables of a class were accessible in
method definitions of a derived class, then anytime you wanted to access a private instance vari-
able, you could simply create a derived class and access it in a method of that class, and that
would mean that all private instance variables would be accessible to anybody who wants to put
in a little extra effort. This scenario illustrates the problem, but the big problem is unintentional
errors, not intentional subversion. If private instance variables of a class were accessible in
method definitions of a derived class, then the instance variables might be changed by mistake or
in inappropriate ways. (Remember, accessor and mutator methods can guard against inappro-
priate changes to instance variables.)

We will discuss one possible way to get around this restriction on private instance variables of the
base class in the upcoming subsection entitled “Protected and Package Access.”

7. Would the following be legal for the definition of a method to add to the class Employee
(Display 7.2)? (Remember, the question is whether it is legal, not whether it is sensible.)

public void crazyMethod()
{
 Employee object = new Employee("Joe",
 new Date("Jan", 1, 2005));
 System.out.println("Hello " + object.name);
}

Would it be legal to add this crazyMethod to the class HourlyEmployee?

8. Suppose you change the modifier before the instance variable name from private to pub-
lic in the class Employee. Would it then be legal to add the method crazyMethod (from
exercise 7) to the class HourlyEmployee?

PRIVATE METHODS ARE EFFECTIVELY NOT INHERITED

As we noted in the previous Pitfall section: An instance variable (or method) that is private in a
base class is not directly accessible outside of the definition of the base class, not even in a
method definition for a derived class. The private methods of the base class are just like private
variables in terms of not being directly available. But in the case of methods, the restriction is
more dramatic. A private variable can be accessed indirectly via an accessor or mutator method.
A private method is simply not available. It is just as if the private method were not inherited. (In

5640_ch07.fm Page 392 Wednesday, February 11, 2004 2:23 PM

Encapsulation and Inheritance 393

one sense, private methods in the base class may be indirectly available in the derived class. If a
private method is used in the definition of a public method of the base class, then that public
method can be invoked in the derived class, or any other class, so the private method can be indi-
rectly invoked.)

This should not be a problem. Private methods should just be used as helping methods, so their
use should be limited to the class in which they are defined. If you want a method to be used as a
helping method in a number of inherited classes, then it is not just a helping method, and you
should make the method public.

■ PROTECTED AND PACKAGE ACCESS

As you have seen, you cannot access (by name) a private instance variable or private
method of the base class within the definition of a derived class. There are two classifica-
tions of instance variables and methods that allow them to be accessed by name in a
derived class. The two classifications are protected access, which always gives access, and
package access, which gives access if the derived class is in the same package as the base class.

If a method or instance variable is modified by protected (rather than public or
private), then it can be accessed by name inside its own class definition, it can be
accessed by name inside any class derived from it, and it can also be accessed by name
in the definition of any class in the same package (even if the class in the same package
is not derived from it). However, the protected method or instance variable cannot be
accessed by name in any other classes. Thus, if an instance variable is marked pro-
tected in the class Parent and the class Child is derived from the class Parent, then the
instance variable can be accessed by name inside any method definition in the class
Child. However, in a class that is not in the same package as Parent and is not derived
from Parent, it is as if the protected instance variable were private.

For example, consider the class HourlyEmployee that was derived from the base class
Employee. We were required to use accessor and mutator methods to manipulate the
inherited instance variables in the definition of HourlyEmployee. For example, consider the
definition of the toString method of the class HourlyEmployee, which we repeat here:

public String toString()
{
 return (getName() + " " + getHireDate().toString()
 + "\n$" + wageRate + " per hour for " + hours + " hours");
}

If the private instance variables name and hireDate had been marked protected in
the class Employee, the definition of toString in the derived class HourlyEmployee
could be simplified to the following:

public String toString() //Legal if instance variables in
 // Employee are marked protected
{

5640_ch07.fm Page 393 Wednesday, February 11, 2004 2:23 PM

394 Chapter 7 Inheritance

 return (name + " " + hireDate.toString()
 + "\n$" + wageRate + " per hour for " + hours + " hours");
}

The protected modifier provides very weak protection compared to the private
modifier, since it allows direct access to any programmer who is willing to go through
the bother of defining a suitable derived class. Many programming authorities discour-
age the use of the protected modifier. Instance variables should normally not be
marked protected. On rare occasions, you may want to have a method marked pro-
tected. If you want an access intermediate between public and private, then the
access described in the next paragraph is often a preferable alternative to protected.

You may have noticed that if you forget to place one of the modifiers public, private,
or protected before an instance variable or method definition, then your class definition
will still compile. If you do not place any of the modifiers public, private, or protected
before an instance variable or method definition, then the instance variable or method
can be accessed by name inside the definition of any class in the same package, but not
outside of the package. This is called package access, default access, or friendly access.
You use package access in situations where you have a package of cooperating classes that
act as a single encapsulated unit. Note that package access is more restricted than pro-
tected, and that package access gives more control to the programmer defining the
classes. If you control the package directory (folder), then you control who is allowed
package access.

The diagram in Display 7.7 may help you to understand who has access to members
with public, private, protected, and package access. The diagram tells who can
(directly) access (by name) variables that have public, private, protected, and package
access. The same access rules apply to methods that have public, private, protected, and
package access.

THE protected MODIFIER

If a method or instance variable is modified by protected (rather than public or private),
then it can be accessed by name inside its own class definition, it can be accessed by name inside
any class derived from it, and it can also be accessed by name in the definition of any class in the
same package.

PACKAGE ACCESS

If you do not place any of the modifiers public, private, or protected before an instance
variable or method definition, then the instance variable or method is said to have package
access. Package access is also known as default access and as friendly access. If an instance
variable or method has package access, it can be accessed by name inside the definition of any
class in the same package, but not outside of the package.

5640_ch07.fm Page 394 Wednesday, February 11, 2004 2:23 PM

Encapsulation and Inheritance 395

Pitfall

FORGETTING ABOUT THE DEFAULT PACKAGE

When considering package access, do not forget the default package. Recall that all the classes in
your current directory (that do not belong to some other package) belong to an unnamed pack-
age called the default package. So, if a class in your current directory is not in any other package,

Display 7.7 Access Modifiers

public class C
 extends A
{
 can access v1.
 can access v2.
 can access v3.
 cannot access v4.

public class D
 extends A
{
 can access v1.
 can access v2.
 cannot access v3.
 cannot access v4.

public class A
{
 public int v1;
 protected int v2;
 int v3.//package
 //access
 private int v4;

public class B
{
 can access v1.
 can access v2.
 can access v3.
 cannot access v4.

public class E
{
 can access v1.
 cannot access v2.
 cannot access v3.
 cannot access v4.

package somePackage;

If the instance variables are replaced by
methods, the same access rules apply.

In this diagram “access” means access
directly, that is, access by name.

A line from one class to another means the lower class is a
derived class of the higher class.

5640_ch07.fm Page 395 Wednesday, February 11, 2004 2:23 PM

396 Chapter 7 Inheritance

Pitfall

then it is in the default package. So if an instance variable or method has package access, then
that instance variable or method can be accessed by name in the definition of any other class in
the default package.

A RESTRICTION ON PROTECTED ACCESS ✜

The situation described in this pitfall does not occur often, but when it does occur it can be very
puzzling if you do not understand what is going on.

Suppose class D is derived from class B, the instance variable n has protected access in class B,
and the classes D and B are in different packages, so the class definitions begin as follows:

package one;
public class B
{
 protected int n;
 ...
}

package two;
import one.B;
public class D extends B
{
 ...
}

Then, the following is a legitimate method that can appear in the definition of class D:

public void demo()
{
 n = 42;//n is inherited from B.
}

The following is also a legitimate method definition for the derived class D:

public void demo2()
{
 D object = new D();
 object.n = 42;//n is inherited from B.
}

5640_ch07.fm Page 396 Wednesday, February 11, 2004 2:23 PM

Encapsulation and Inheritance 397

Self-Test Exercises

However, the following is not allowed as a method of D:

public void demo3()
{
 B object = new B();
 object.n = 42; //Error
}

The compiler will give an error message saying n is protected in B.

Similar remarks apply to protected methods.

A class knows about its own classes’ inherited variables and methods, but cannot directly access
any instance variables or methods of an ancestor class unless they are public. In the above exam-
ple, n is an instance variable of B and an instance variable of the derived class D. D can access n
whenever n is used as an instance variable of D, but D cannot access n when n is used as an
instance variable of B.

If the classes B and D are in the same package, you would not get the error message because, in
Java, protected access implies package access. In particular, if the classes B and D are both in the
default package, you would not get the error message.

9. Suppose you change the modifier before the instance variable name from private to pro-
tected in the class Employee (Display 7.2). Would it then be legal to add the method
crazyMethod (from Self-Test Exercise 7) to the class HourlyEmployee (Display 7.3)?

10. Which is more restricted, protected access or package access?

11. Suppose class D is derived from class B, the method doStuff() has protected access in class
B, and the classes D and B are in different packages, so the class definitions begin as follows:

package one;
public class B
{
 protected void doStuff()
 {
 ...
}

package two;
import one.B;
public class D extends B
{
 ...
}

5640_ch07.fm Page 397 Wednesday, February 11, 2004 2:23 PM

398 Chapter 7 Inheritance

Tip

Is the following a legitimate method that can appear in the definition of the class D?

public void demo()
{
 doStuff();//doStuff is inherited from B.
}

12. ✜ Suppose B and D are as described in exercise 11. Is the following a legitimate method that
can appear in the definition of the class D?

public void demo2()
{
 D object = new D();
 object.doStuff();//doStuff is inherited from B.
}

13. ✜ Suppose B and D are as described in exercise 11. Is the following a legitimate method that
can appear in the definition of the class D?

public void demo3()
{
 B object = new B();
 object.doStuff();
}

Programming with Inheritance
The devil is in the details.

Common saying

In the previous section we described the basic idea and basic details about derived classes.
In this section we continue that discussion and go on to discuss some more subtle points
about derived classes. In the process we also discuss the class Object, which is an ancestor
class of all Java classes, and we describe a better way to define an equals method.

“IS A” VERSUS “HAS A”

Early in this chapter we defined a derived class called HourlyEmployee using the class
Employee as the base class. In such a case an object of the derived class HourlyEmployee is
also an instance of the class Employee, or, stated more simply, an HourlyEmployee is an

7.3

5640_ch07.fm Page 398 Wednesday, February 11, 2004 2:23 PM

Programming with Inheritance 399

Tip

Employee. This is an example of the “is a” relationship between classes. It is one way to make a
more complex class out of a simpler class.

Another way to make a more complex class out of a simpler class is known as the “has a” relation-
ship. For example, the class Employee defined earlier has an instance variable of the class type
Date. We express this relationship by saying an Employee “has a” Date. Using the “has a” rela-
tionship to build a class (such as building the class Employee by using Date as an instance vari-
able) is often called composition.

Since the class HourlyEmployee inherits the instance variable of type Date from the class
Employee, it is also correct to say an HourlyEmployee “has a” Date. Thus, an HourlyEm-
ployee is an Employee and has a Date.

STATIC VARIABLES ARE INHERITED

Static variables in a base class are inherited by any derived classes. The modifiers public, pri-
vate, and protected, and package access have the same meaning for static variables as they
do for instance variables.

■ ACCESS TO A REDEFINED BASE METHOD

Suppose you redefine a method so that it has a different definition in the derived class
from what it has in the base class. The definition that was given in the base class is not
completely lost to the derived class objects. However, if you want to invoke the version
of the method given in the base class with an object in the derived class, you need some
way to say “use the definition of this method as given in the base class (even though I
am an object of the derived class).” The way you say this is to use the keyword super as
if it were a calling object.

For example, the method toString of the class HourlyEmployee (Display 7.3) was
defined as follows:

public String toString() //in the derived class HourlyEmployee
{
 return (getName() + " " + getHireDate().toString()
 + "\n$" + wageRate + " per hour for " + hours + " hours");
}

This overrides the following definition of toString() that was given in the definition
of the base class Employee:

public String toString() //in the base class Employee
{

“is a” relationship

“has a”
relationship

composition

super
relationship

5640_ch07.fm Page 399 Wednesday, February 11, 2004 2:23 PM

400 Chapter 7 Inheritance

Pitfall

 return (name + " " + hireDate.toString());
}

We can use the version of the method toString() defined in the base class Employee
to simplify the definition of the method toString() in the derived class HourlyEm-
ployee. The following is an equivalent way to define toString() in the derived class
HourlyEmployee:

public String toString() //in the derived class HourlyEmployee
{
 return (super.toString()
 + "\n$" + wageRate + " per hour for " + hours + " hours");
}

The expression super.toString() is an invocation of the method toString() using
the definition of toString() given in the base class Employee.

You can only use super in this way within the definition of a method in a derived
class. Outside of the definition of the derived class you cannot invoke an overridden
method of the base class using an object of the derived class.

YOU CANNOT USE MULTIPLE superS

As we already noted, within the definition of a method of a derived class, you can call an overrid-
den method of the base class by prefacing the method name with super and a dot. However, you
cannot repeat the use of super to invoke a method from some ancestor class other than a direct

INVOKING THE OLD VERSION OF AN OVERRIDDEN METHOD?

Within the definition of a method of a derived class, you can invoke the base class version of an
overridden method of the base class by prefacing the method name with super and a dot. Out-
side of the derived class definition, there is no way to invoke the base class version of an overrid-
den method using an object of the derived class.

EXAMPLE:

public String toString()
{
 return (super.toString()
 + "\n$" + wageRate + " per hour for " + hours + " hours");
}

5640_ch07.fm Page 400 Wednesday, February 11, 2004 2:23 PM

Programming with Inheritance 401

Self-Test Exercises

parent. For example, suppose that the class Employee were derived from the class Person, and
the class HourlyEmployee is derived from the class Employee. You might think that you can
invoke a method of the class Person within the definition of the class HourlyEmployee, by
using super.super, as in

super.super.toString()//ILLEGAL!

However, as the comment indicates, it is illegal to have such multiple supers in Java.

14. Redefine the toString method of the class SalariedEmployee (Display 7.5) so that it
uses super.toString(). This new definition of toString will be equivalent to the one
given in Display 7.5.

15. Redefine the equals method for the class HourlyEmployee (Display 7.3) using
super.equals to invoke the equals method of the base class Employee.

16. Is the following program legal? The relevant classes are defined in Displays 7.2 and 7.3.

public class EmployeeDemo
{
 public static void main(String[] args)
 {
 HourlyEmployee joe =
 new HourlyEmployee("Joe Young",
 new Date("Feb", 1, 2004), 10.50, 40);
 String nameNDate = joe.super.toString();
 System.out.println(nameNDate);
 }
}

17. Suppose you add the following defined constant to the class Employee (Display 7.2):

public static final int STANDARD_HOURS = 160;//per month

Would it then be legal to add the following method to the class HourlyEmployee (Display
7.3)?

public void setHoursToStandard()
{
 hours = STANDARD_HOURS;
}

5640_ch07.fm Page 401 Wednesday, February 11, 2004 2:23 PM

402 Chapter 7 Inheritance

■ THE CLASS Object

Java has a class that is an ancestor of every class. In Java, every class is a derived class of a
derived class of . . . (for some number of iterations of “a derived class of”) of the class
Object. So, every object of every class is of type Object, as well as being of the type of its
class (and also of the types of all its ancestor classes). Even classes that you define yourself
are descendent classes of the class Object. If you do not make your class a derived class of
some class, then Java will automatically make it a derived class of the class Object.

The class Object allows you to write Java code for methods with a parameter of type
Object that can be replaced by an object of any class whatsoever. You will eventually
encounter library methods that accept an argument of type Object and hence can be
used with an argument that is an object of absolutely any class.

The class Object is in the package java.lang, which is always imported automati-
cally. So, you do not need any import statement to make the class Object available to
your code.

The class Object does have some methods that every Java class inherits. For exam-
ple, every object inherits the methods equals and toString from some ancestor class,
which either is the class Object or a class that itself inherited the methods ultimately
from the class Object. However, the inherited methods equals and toString will not
work correctly for (almost) any class you define. You need to override the inherited
method definitions with new, more appropriate definitions.

It is important to include definitions of the methods toString and equals in the
classes you define, since some Java library classes assume your class has such methods.
There are no subtleties involved in defining (actually redefining or overriding) the
method toString. We have seen good examples of the method toString in many of
our class definitions. The definition of the overridden method equals does have some
subtleties and we will discuss them in the next subsection.

Another method inherited from the class Object is the method clone, which is
intended to return a copy of the calling object. We discuss the clone method in Chap-
ters 8 and 13.

■ THE RIGHT WAY TO DEFINE equals

Earlier we said that the class Object has an equals method, and that when you define a
class with an equals method you should override the definition of the method equals

THE CLASS Object

In Java, every class is a descendent of the class Object. So, every object of every class is of type
Object, as well as being of the type of its class.

Object
class

toString

equals

clone

5640_ch07.fm Page 402 Wednesday, February 11, 2004 2:23 PM

Programming with Inheritance 403

given in the class Object. However, we did not, strictly speaking, follow our own
advice. The heading for the method equals in our definition of the class Employee
(Display 7.2) is as follows:

public boolean equals(Employee otherEmployee)

On the other hand, the heading for the method equals in the class Object is as follows:

public boolean equals(Object otherObject)

The two equals methods have different parameter types, so we have not overridden the
definition of equals. We have merely overloaded the method equals. The class
Employee has both of these methods named equals.

In most situations, this will not matter. However, there are situations in which it
does matter. Some library methods assume your class’s definition of equals has the fol-
lowing heading, the same as in the class Object:

public boolean equals(Object otherObject)

We need to change the type of the parameter for the equals method in the class
Employee from type Employee to type Object. A first try might produce the following:

public boolean equals(Object otherObject)
{
 Employee otherEmployee = (Employee)otherObject;
 return (name.equals(otherEmployee.name)
 && hireDate.equals(otherEmployee.hireDate));
}

We needed to type cast the parameter otherObject from type Object to type Employee.
If we omit the type cast and simply proceed with otherObject, the compiler will give
an error message when it sees

otherObject.name

The class Object does not have an instance variable named name.

This first try at an improved equals method does override the definition of equals
given in the class Object and will work well in many cases. However, it still has a short-
coming.

Our definition of equals now allows an argument that can be any kind of object
whatsoever. What happens if the method equals is used with an argument that is not
an Employee? The answer is that a run-time error will occur when the type cast to
Employee is executed.

We need to make our definition work for any kind of object. If the object is not an
Employee, we simply return false. The calling object is an Employee, so if the argu-
ment is not an Employee, they should not be considered equal. But how can we tell
whether the parameter is or is not of type Employee?

5640_ch07.fm Page 403 Wednesday, February 11, 2004 2:23 PM

404 Chapter 7 Inheritance

Every object inherits the method getClass() from the class Object. The method
getClass() is marked final in the class Object, so it cannot be overridden. For any
object o, o.getClass() returns a representation of the class used to create o. For exam-
ple, after the following is executed:

o = new Employee();

o.getClass() returns a representation Employee.

We will not describe the details of this representation except to say that two such
representations should be compared with = or != if you want to know if two representa-
tions are the same. Thus,

if (object1.getClass() == object2.getClass())
 System.out.println("Same class.");
else
 System.out.println("Not the same class.");

will output Same class if object1 and object2 were created with the same class when
they were created using new, and output Not same class otherwise.

Our final version of the method equals is shown in Display 7.8. Note that we have
also taken care of one more possible case. The predefined constant null can be plugged
in for a parameter of type Object. The Java documentation says that an equals method
should return false when comparing an object and the value null. So that is what we
have done.

On the accompanying CD, the subdirectory improvedEquals (of the directory for
this chapter) has a definition of the class Employee that includes this definition of
equals.

Display 7.8 A Better equals Method for the Class Employee

1 public boolean equals(Object otherObject)
2 {
3 if (otherObject == null)
4 return false;
5 else if (getClass() != otherObject.getClass())
6 return false;
7 else
8 {
9 Employee otherEmployee = (Employee)otherObject;

10 return (name.equals(otherEmployee.name)
11 && hireDate.equals(otherEmployee.hireDate));
12 }
13 }

extra code on CD

5640_ch07.fm Page 404 Wednesday, February 11, 2004 2:23 PM

Programming with Inheritance 405

Tip

getClass VERSUS instanceof ✜

Many authors suggest that in the definition of equals for a class such as Employee, given in
Display 7.8, you should not use

else if (getClass() != otherObject.getClass())
 return false;

but should instead use

else if (!(otherObject instanceof Employee))
 return false;

What is the difference and which should you use? At first glance it seems like you should use
instanceof in the definition of equals. The instanceof operator checks to see if an object is
of the type given as its second argument. The syntax is

Object instanceof Class_Name

which returns true if Object is of type Class_Name; otherwise it returns false. So, the following
will return true if otherObject is of type Employee:

(otherObject instanceof Employee)

Suppose that (contrary to what we really did) we instead used instanceof in our definition of
equals for the class Employee and we also used instanceof in our definition for the class
HourlyEmployee, so that the definition of equals for HourlyEmployee is as follows:

public boolean equals(Object otherObject)
//This is NOT the right way to define equals.
{
 if (otherObject == null)
 return false;
 else if (!(otherObject instanceof HourlyEmployee))
 return false;
 else
 {
 HourlyEmployee otherHourlyEmployee =
 (HourlyEmployee)otherObject;
 return (super.equals(otherHourlyEmployee)
 && (wageRate == otherHourlyEmployee.wageRate)
 && (hours == otherHourlyEmployee.hours));
 }
}

instanceof

5640_ch07.fm Page 405 Wednesday, February 11, 2004 2:23 PM

406 Chapter 7 Inheritance

Self-Test Exercises

Assuming that the equals method for both Employee and HourlyEmployee are defined using
instanceof (as above), consider the following situation:

Employee e =
 new Employee("Joe Worker", new Date("Jan", 1, 2004));
HourlyEmployee hourlyE = new HourlyEmployee("Joe Worker",
 new Date("Jan", 1, 2004), 50.50, 160);

Then, with the definition of equals that uses instanceof, we get that

e.equals(hourlyE)

returns true, since hourlyE is an Employee with the same name and hire date as e. So far, it
sounds reasonable.

However, since we are assuming that we also used instanceof in the definition of equals for
the class HourlyEmployee, we also get that

hourlyE.equals(e)

returns false because e instanceof HourlyEmployee returns false. (e is an Employee
but e is not an HourlyEmployee.)

So, if we define equals in both classes using instanceof, then e equals hourlyE, but hour-
lyE does not equal e. And, that’s no way for equals to behave.

Since instanceof does not yield a suitable definition of equals, you should instead use
getClass() as we did in Display 7.8. If we use getClass() in a similar way in the definition of
equals for the class HourlyEmployee (see Self-Test Exercise 19), then

e.equals(hourlyE)

and

hourlyE.equals(e)

both return false.

18. ✜ Redefine the method equals given in Display 7.8 using instanceof instead of
getClass(). Give the complete definition. Remember, we do not want you to define
equals this way in your class definitions; this is just an exercise.

19. Redefine the equals method of the class HourlyEmployee (Display 7.3) so that it has a
parameter of type Object and follows the other guidelines we gave for an equals method.
Assume the definition of the method equals for the class Employee has been changed to
be as in Display 7.8. (Remember, you should use getClass(), not instanceof.)

5640_ch07.fm Page 406 Wednesday, February 11, 2004 2:23 PM

Programming with Inheritance 407

instanceof AND getClass() ✜

Both the instanceof operator and the getClass() method can be used to check the class of
an object. The instanceof operator simply tests the class of an object. The getClass()
method used in a test with == or != tests if two objects were created with the same class. The
details follow.

THE instanceof OPERATOR

The instanceof operator checks if an object is of the type given as its second argument. The
syntax is

Object instanceof Class_Name

which returns true if Object is of type Class_Name; otherwise it returns false. So, the following
will return true if otherObject is of type Employee:

(otherObject instanceof Employee)

Note that this means it returns true if otherObject is of the type of any descendent class of
Employee, because in that case otherObject is also of type Employee.

THE getClass() METHOD

Every object inherits the method getClass() from the class Object. The method getClass()
is marked final in the class Object, so it cannot be overridden. For any object of any class,

object.getClass()

returns a representation of the class that was used with new to create object. Any two such rep-
resentations can be compared with == or != to determine whether or not they represent the same
class. Thus,

if (object1.getClass() == object2.getClass())
 System.out.println("Same class.");
else
 System.out.println("Not the same class.");

will output Same class if object1 and object2 were created with the same class when they
were created using new, and output Not same class otherwise.

EXAMPLES:

Suppose that HourlyEmployee is a derived class of Employee and that employeeObject and
hourlyEmployeeObject are created as follows:

Employee employeeObject = new Employee();
HourlyEmployee hourlyEmployeeObject = new HourlyEmployee();

5640_ch07.fm Page 407 Wednesday, February 11, 2004 2:23 PM

408 Chapter 7 Inheritance

20. Redefine the equals method of the class SalariedEmployee (Display 7.5) so that it has a
parameter of type Object and follows the other guidelines we gave for an equals method.
Assume the definition of the method equals for the class Employee has been changed to
be as in Display 7.8. (Remember, you should use getClass(), not instanceof.)

21. Redefine the equals method of the class Date (Display 4.11) so that it has a parameter of
type Object and follows the other guidelines we gave for an equals method. (Remember,
you should use getClass(), not instanceof.)

22. What is the output produced by the following program? (The classes Employee and Hour-
lyEmployee were defined in this chapter.)

public class Test
{
 public static void main(String[] args)
 {
 Employee object1 = new Employee();
 Employee object2 = new HourlyEmployee();

 if (object1.getClass() == object2.getClass())
 System.out.println("Same class.");

Then:

employeeObject.getClass() == hourlyEmployeeObject.getClass()

 returns false.

employeeObject instanceof Employee

 returns true.

hourlyEmployeeObject instanceof Employee

 returns true.

employeeObject instanceof HourlyEmployee

 returns false.

hourlyEmployeeObject instanceof HourlyEmployee

 returns true.

5640_ch07.fm Page 408 Wednesday, February 11, 2004 2:23 PM

Chapter Summary 409

 else
 System.out.println("Not the same class.");
 }
}

■ Inheritance provides a tool for code reuse by deriving one class from another. The
derived class automatically inherits the features of the old (base) class and may add
features as well.

■ A derived class object inherits the instance variables, static variables, and public
methods of the base class, and may add additional instance variables, static variables,
and methods.

■ An object of a derived class has the type of the derived class, and it also has the type of
the base class, and more generally, has the type of every one of its ancestor classes.

■ If an instance variable is marked private in a base class, then it cannot be accessed
by name in a derived class.

■ Private methods are effectively not inherited.

■ A method may be redefined in a derived class so that it performs differently from
how it performs in the base class. This is called overriding the method definition.
The definition for an overridden method is given in the class definition of the
derived class, in the same way as the definitions of any added methods.

■ A constructor of a base class can be used in the definition of a constructor for a derived
class. The keyword super is used as the name for a constructor of the base class.

■ A constructor definition can use the keyword this, as if it were a method name, to
invoke a constructor of the same class.

■ If a constructor does not contain an invocation of either super or this, then Java
automatically inserts an invocation of super() as the first action in the body of the
constructor definition.

■ A protected instance variable or method in the base class can be accessed by name
in the definition of a method of a derived class and in the definition of any method
in the same package.

■ If an instance variable or method has none of the modifiers public, private, or
protected, then it is said to have package access. An instance variable or method with
package access can be accessed by name in the definition of any method in the same
package.

■ The class Object is an ancestor class of every class in Java.

■ The equals method for a class should have Object as the type of its one parameter.

Chapter Summary

5640_ch07.fm Page 409 Wednesday, February 11, 2004 2:23 PM

410 Chapter 7 Inheritance

ANSWERS TO SELF-TEST EXERCISES

1. Yes, it will have the instance variables. A derived class has all the instance variables that the
base class has and can add more instance variables besides.

2. Yes, it will have the methods. A derived class has all the public methods that the base class
has and can also add more methods. If the derived class does not override (redefine) a
method definition, then it performs exactly the same action in the derived class as it does in
the base class. However, the base class can contain an overriding definition of (a new defi-
nition of) a method and the new definition will replace the old definition (provided it has
the same number and types of parameters).

3. The class DiscountSale will have two methods named getTax and they will have the fol-
lowing two headings. This is an example of overloading.

public double getTax()
public double getTax(double rate)

4. The method getName is inherited from the class Employee and so needs no definition.
The method getRate is a new method added in the class HourlyEmployee and so needs
to be defined.

5. Yes. You can plug in an object of a derived class for a parameter of the base class type. An
HourlyEmployee is an Employee. A SalariedEmployee is an Employee.

6. public class TitledEmployee extends SalariedEmployee
{
 private String title;

 public TitledEmployee()
 {
 super(null, null, 0);
 title = null;
 }

 public TitledEmployee(String theName, String theTitle,
 Date theDate, double theSalary)
 {
 super(theName, theDate, theSalary);
 title = theTitle;
 }

 public String getTitle()
 {
 return title;
 }

 public void setTitle(String theTitle)
 {
 title = theTitle;

5640_ch07.fm Page 410 Wednesday, February 11, 2004 2:23 PM

Answers to Self-Test Exercises 411

 }

 public String getName()
 {
 return (title + super.getName());
 }
}

7. It would be legal to add crazyMethod to the class Employee. It would not be legal to add
crazyMethod to the class HourlyEmployee because, although the class HourlyEmployee
has an instance variable name, name is private in the base class Employee and so cannot be
accessed by name in HourlyEmployee.

8. Yes, it would be legal as long as name is marked public in the base class Employee.

9. Yes, it would be legal as long as name is marked protected in the base class Employee.

10. Package access is more restricted. Anything allowed by package access is also allowed by
protected access, but protected access allows even more.

11. Yes, it is legitimate.

12. Yes, it is legitimate.

13. No, it is not legitimate. The compiler will give an error message saying doStuff() is pro-
tected in B.

14. public String toString()
{
 return (super.toString()
 + "\n$" + salary + " per year");
}

15. public boolean equals(HourlyEmployee other)
{
 return (super.equals(other)
 && wageRate == other.wageRate
 && hours == other.hours);
}

We will give an even better definition of equals for the class HourlyEmployee later in this
chapter.

16. It is not legal. You cannot use super in this way. super.toString() as used here refers to
toString() in the class Employee and can only be used in definitions of classes derived
from Employee. Moreover, you cannot have a calling object, such as joe, before super, so
this is even illegal if you add extends Employee to the first line of the class definition.

17. Yes, all static variables are inherited. Since a defined constant is a form of static variable, it
is inherited. So, the class HourlyEmployee inherits the constant STANDARD_HOURS from
the class Employee.

5640_ch07.fm Page 411 Wednesday, February 11, 2004 2:23 PM

412 Chapter 7 Inheritance

18. public boolean equals(Object otherObject)
//This is NOT the right way to define equals.
{
 if (otherObject == null)
 return false;
 else if (!(otherObject instanceof Employee))
 return false;
 else
 {
 Employee otherEmployee = (Employee)otherObject;
 return (name.equals(otherEmployee.name)
 && hireDate.equals(otherEmployee.hireDate));
 }
 }

19. A version of the HourlyEmployee class with this definition of equals is in the subdirec-
tory improvedEquals of the ch07 directory on the accompanying CD.

public boolean equals(Object otherObject)
{
 if (otherObject == null)
 return false;
 else if (getClass() != otherObject.getClass())
 return false;
 else
 {
 HourlyEmployee otherHourlyEmployee =
 (HourlyEmployee)otherObject;
 return (super.equals(otherHourlyEmployee)
 && (wageRate == otherHourlyEmployee.wageRate)
 && (hours == otherHourlyEmployee.hours));
 }
}

20. A version of the SalariedEmployee class with this definition of equals is in the subdirec-
tory improvedEquals of the ch07 directory on the accompanying CD.

public boolean equals(Object otherObject)
{
 if (otherObject == null)
 return false;
 else if (getClass() != otherObject.getClass())
 return false;
 else
 {
 SalariedEmployee otherSalariedEmployee =
 (SalariedEmployee)otherObject;

extra code
on CD

extra code
on CD

5640_ch07.fm Page 412 Wednesday, February 11, 2004 2:23 PM

Programming Projects 413

 return (super.equals(otherSalariedEmployee)
 && (salary == otherSalariedEmployee.salary));
 }
}

21. A version of the Date class with this definition of equals is in the subdirectory improved-
Equals of the ch07 directory on the accompanying CD.

public boolean equals(Object otherObject)
{
 if (otherObject == null)
 return false;
 else if (getClass() != otherObject.getClass())
 return false;
 else
 {
 Date otherDate =
 (Date)otherObject;
 return (month.equals(otherDate.month)
 && (day == otherDate.day)
 && (year == otherDate.year));
 }
}

22. Not the same class.

PROGRAMMING PROJECTS

1. Define a class called Administrator, which is a derived class of the class SalariedEmployee
in Display 7.5. You are to supply the following additional instance variables and methods:

An instance variable of type String that contains the administrator's title (such as
"Director" or "Vice President").

An instance variable of type String that contains the administrator’s area of responsi-
bility (such as "Production", "Accounting", or "Personnel").

An instance variable of type String that contains the name of this administrator's
immediate supervisor.

Suitable constructors, and suitable accessor and mutator methods.

A method for reading in an administrator’s data from the keyboard.

Override the definitions for the methods equals and toString so they are appropriate
to the class Administrator.

Also, write a suitable test program.

extra code
on CD

5640_ch07.fm Page 413 Wednesday, February 11, 2004 2:23 PM

project413.html

414 Chapter 7 Inheritance

2. Give the definition of a class named Doctor whose objects are records for a clinic’s doctors.
This class will be a derived class of the class SalariedEmployee given in Display 7.5. A
Doctor record has the doctor’s specialty (such as "Pediatrician", "Obstetrician",
"General Practitioner", and so forth; so use the type String) and office visit fee (use
type double). Be sure your class has a reasonable complement of constructors, accessor and
mutator methods, and suitably defined equals and toString methods. Write a program
to test all your methods.

3. Create a class called Vehicle that has the manufacturer’s name (type String), number of
cylinders in the engine (type int), and owner (type Person given below). Then, create a
class called Truck that is derived from Vehicle and has the following additional proper-
ties: the load capacity in tons (type double since it may contain a fractional part) and tow-
ing capacity in pounds (type int). Be sure your class has a reasonable complement of
constructors, accessor and mutator methods, and suitably defined equals and toString
methods. Write a program to test all your methods.

The definition of the class Person is below. Completing the definitions of the methods is
part of this programming project.

public class Person
{
 private String name;

 public Person()
 {...}
 public Person(String theName)
 {...}
 public Person(Person theObject)
 {...}
 public String getName()
 {...}
 public void setName(String theName)
 {...}
 public String toString()
 {...}
 public boolean equals(Object other)
 {...}
}

4. Give the definition of two classes, Patient and Billing, whose objects are records for a
clinic. Patient will be derived from the class Person given in Programming Project 3. A
Patient record has the patient’s name (inherited from the class Person) and primary phy-
sician, of type Doctor defined in Programming Project 2..A Billing object will contain a
Patient object and a Doctor object, and an amount due of type double. Be sure your
classes have a reasonable complement of constructors, accessor and mutator methods, and
suitably defined equals and toString methods. First write a driver program to test all
your methods, then write a test program that creates at least two patients, at least two doc-
tors, and at least two Billing records, and then prints out the total income from the
Billing records.

5640_ch07.fm Page 414 Wednesday, February 11, 2004 2:23 PM

project414a.html
project414b.html

	code links 2:
	code links 3:
	code links 4:
	code links 1:
	code links 5:
	program project 7:
	1:
	2:
	3:

