

CHAPTER

2

Console Input and Output

2.1 SCREEN OUTPUT 58

System.out.println 58

Money Formats 61

Importing Packages and Classes 64

The

DecimalFormat Class

✜ 66

2.2

JOptionPane 70

The Basics 70

Yes/No Questions with

JOptionPane

✜ 76

2.3 CONSOLE INPUT USING

BufferedReader 78

The Basics 78

Pitfall: Input in Wrong Format 81

Tip: Echo Input 81

A Preview of the

StringTokenizer Class 83

2.4 INPUT USING

ConsoleIn

✜ 84

The Basics

✜ 84

CHAPTER SUMMARY 88
ANSWERS TO SELF-TEST EXERCISES 88
PROGRAMMING PROJECTS 91

5640_ch02.fm Page 57 Wednesday, February 11, 2004 2:12 PM

2

Console Input and Output

Don’t imagine you know what a computer terminal is.
A computer terminal is not some clunky old television
with a typewriter in front of it. It is an interface
where the mind and the body can connect with the
universe and move bits of it about.

Douglas Adams, Mostly Harmless
(

the fifth volume in

 The Hitchhiker’s Trilogy)

This chapter covers simple output to the screen and input from the keyboard,
often called console I/O

. Like most programming languages, Java has facilities for
simple console output. In fact, we have already been using it. However, unlike
other languages, Java has no simple standard console input. We will present three
ways to cope with this deficiency in Java. Two are very standard and will be used
throughout this book. The third way requires that you add a class to Java (writ-
ten in Java of course). This third way is optional and will not be used in this
book after it is explained, but many programmers find it (or something like it) to
be the easiest and the cleanest way to handle keyboard input.

Screen Output

Let me tell the world.

William Shakespeare,

King Henry IV

In this section we review

System.out.println

 and present some material on
formatting numeric output. As part of that material we give a brief introduc-
tion to

packages

 and

import statements.

 Packages are Java libraries of classes.
Import statements make classes from a package available to your program.

■

System.out.println

We have already been using

System.out.println

 for screen output. In Dis-
play 1.7, we used statements like the following to send output to the display
screen:

System.out.println("The changed string is:");
System.out.println(sentence);

System.out

 is an object that is part of the Java language and

println

 is a
method invoked by that object. It may seem strange to spell an object name
with a dot in it, but that need not concern us for now.

console I/O

2.1

System.out.
println

5640_ch02.fm Page 58 Wednesday, February 11, 2004 2:12 PM

Screen Output 59

When you use

System.out.println

 for output, the data to be output is given as an
argument in parentheses, and the statement ends with a semicolon. The things you can
output are strings of text in double quotes, like

"The changed string is:"

,

String

 vari-
ables like

sentence

, variables of other types such as variables of type

int

, numbers like

5

or

7.3

, and almost any other object or value. If you want to output more than one thing,
simply place an addition sign between the things you want to output. For example:

System.out.println("Answer is = " + 42
 + " Accuracy is = " + precision);

If the value of

precision

 is

0.01

, the output will be

Answer is = 42 Accuracy is = 0.01

Notice the space at the start of

 " Accuracy is = "

. No space is added automatically.

The

+

 operator used here is the concatenation operator that we discussed earlier. So, the
above output statement converts the number

42

 to the string

"42",

 converts the number

0.01

 to the string

"0.01",

and then forms the following string using concatenation:

"Answer is = 42 Accuracy is = 0.01"

System.out.println

 then outputs this longer string.

Every invocation of

println

 ends a line of output. For example, consider the follow-
ing statements:

System.out.println("A wet bird");
System.out.println("never flies at night.");

These two statements will cause the following output to appear on the screen:

A wet bird
never flies at night.

println OUTPUT

You can output one line to the screen using

System.out.println. The items output can be
quoted strings, variables, numbers, or almost any object you can define in Java. To output more
than one item, place a plus sign between the items.

SYNTAX:

System.out.println(Item_1

 + Item_2

 + ... + Last_Item

);

EXAMPLE:

System.out.println("Welcome to Java.");
System.out.println("Elapsed time = " + time + " seconds");

5640_ch02.fm Page 59 Wednesday, February 11, 2004 2:12 PM

60 Chapter 2 Console Input and Output

If you want the output from two or more output statements to place all their output
on a single line, then use

print

 instead of

println

. For example,

System.out.print("A ");
System.out.print("wet ");
System.out.println("bird");
System.out.println("never flies at night.");

will produce the same output as our previous example:

A wet bird
never flies at night.

Notice that a new line is not started until you use a

println

, rather than a

print

.
Also notice that the new line starts

after

 outputting the items specified in the

println

.
This is the only difference between

print

 and

println

.

Another way to describe the difference between

print

 and

println

 is to note that

System.out.println(SomeThing

);

is equivalent to

System.out.print(SomeThing

 + "\n");

println VERSUS

print

The only difference between

System.out.println and

System.out.print is that with

println, the next output goes on a new line, whereas with

print, the next output will be
placed on the same line.

EXAMPLE:

System.out.print("Tom ");
System.out.print("Dick ");
System.out.println("and ");
System.out.print("Harry ");

will produce the following output

Tom Dick and
Harry

(The output would look the same whether the last line read

print or println.)

print versus
println

5640_ch02.fm Page 60 Wednesday, February 11, 2004 2:12 PM

Screen Output 61

■ MONEY FORMATS

Using the class NumberFormat, you can tell Java to use the appropriate format when
outputting amounts of money. The technique is illustrated in Display 2.1. Let’s look at
the code in the main method that does the formatting. First consider

NumberFormat moneyFormater =
 NumberFormat.getCurrencyInstance();

The method invocation NumberFormat.getCurrencyInstance() produces an object of
the class NumberFormat and names the object moneyFormater. You can use any valid
identifier (other than a keyword) in place of moneyFormater. This object moneyFor-
mater has a method named format that takes a floating-point number as an argument
and returns a String value representing that number in the local currency (the default
currency). For example, the invocation

moneyFormater.format(19.8)

returns the String value "$19.80", assuming the default currency is the U.S. dollar. In
Display 2.1 this method invocation occurs inside a System.out.println statement, but
it is legal anyplace a String value is legal. For example, the following would be legal:

String moneyString = moneyFormater.format(19.8);

In order to make the class NumberFormat available to your code, you must include
the following near the start of the file with your program:

import java.text.NumberFormat;

This is illustrated in Display 2.1.

The method invocation NumberFormat.getCurrencyInstance() produces an object
that will format numbers according to the default location. In Display 2.1 we are
assuming the default location is the United States and so the numbers are output as

Self-Test Exercises

1. Write Java statements that will cause the following to be written to the screen:

May the hair on your toes
grow long and curly.

2. What is the difference between System.out.println and System.out.print?

3. What is the output produced by the following?

System.out.println(2 + " " + 2);
System.out.println(2 + 2);

5640_ch02.fm Page 61 Wednesday, February 11, 2004 2:12 PM

62 Chapter 2 Console Input and Output

Display 2.1 Currency Format (Part 1 of 2)

1 import java.text.NumberFormat;
2 import java.util.Locale;

3 public class CurrencyFormatDemo
4 {
5 public static void main(String[] args)
6 {
7 System.out.println("Without formatting:");

8 System.out.println(19.8);
9 System.out.println(19.81111);

10 System.out.println(19.89999);
11 System.out.println(19);
12 System.out.println();

13 System.out.println("Default location:");
14 NumberFormat moneyFormater =
15 NumberFormat.getCurrencyInstance();

16 System.out.println(moneyFormater.format(19.8));
17 System.out.println(moneyFormater.format(19.81111));
18 System.out.println(moneyFormater.format(19.89999));
19 System.out.println(moneyFormater.format(19));
20 System.out.println();

21 System.out.println("US as location:");
22 NumberFormat moneyFormater2 =
23 NumberFormat.getCurrencyInstance(Locale.US);

24 System.out.println(moneyFormater2.format(19.8));
25 System.out.println(moneyFormater2.format(19.81111));
26 System.out.println(moneyFormater2.format(19.89999));
27 System.out.println(moneyFormater2.format(19));
28 }

29 }

Notice that this
number is rounded
to 19.90.

If you use only the default location, you do not need to
import Locale.

5640_ch02.fm Page 62 Wednesday, February 11, 2004 2:12 PM

codes62.html

Screen Output 63

U.S. dollars. On other systems, the default should be set to the local currency. If you
wish, you can specify the location, and hence the local currency, by giving an argument
to NumberFormat.getCurrencyInstance. For example, in Display 2.1 we used the con-
stant Locale.US to specify that the location is the United States. The relevant line from
Display 2.1 is repeated in what follows:

NumberFormat moneyFormater2 =
 NumberFormat.getCurrencyInstance(Locale.US);

Some constants for other countries (and hence other currencies) are given in Display
2.2. However, unless your screen has the capability of displaying the currency symbol
for the country whose constant you use, the output may not be as desired.

These location constants are objects of the class Locale. In order to make the class
Locale and these constants available to your code, you must include the following near
the start of the file with your program:

import java.util.Locale;

If you do not use any of these location constants and only use the default location, you
do not need this import statement.

Display 2.1 Currency Format (Part 2 of 2)

SAMPLE DIALOGUE

Without formatting:
19.8
19.81111
19.89999
19

Default location:
$19.80
$19.81
$19.90
$19.00

US as location:
$19.80
$19.81
$19.90
$19.00

This assumes that the system is set to use U.S. as the default
location. If you are not in the U.S., you will probably get the
format for your local currency.

This should give you the format for U.S. currency no matter what
country has been set as the default location.

5640_ch02.fm Page 63 Wednesday, February 11, 2004 2:12 PM

64 Chapter 2 Console Input and Output

The notation Locale.US may seem a bit strange, but it follows a convention that is
frequently used in Java code: The constant is named US but we specifically want that
constant named US that is defined in the class Locale. So, we use Locale.US. The nota-
tion Locale.US means the constant US as defined in the class Locale.

■ IMPORTING PACKAGES AND CLASSES

Libraries in Java are called packages. A package is simply a collection of classes that has
been given a name and that is stored in such a way as to make it easily accessible to your
Java programs. Java has a large number of standard packages that automatically come
with Java. Two such packages are named java.text and java.util. In Display 2.1 we
used the class NumberFormat, which is a member of the package java.text. In order to
use NumberFormat, you must import the class, which we did as follows:

import java.text.NumberFormat;

This kind of statement is called an import statement. In this example, the import state-
ment tells Java to look in the package java.text to find the definition of the class Num-
berFormat.

If you wanted to import all the classes in the java.text package, you would use

import java.text .*;

Then, you can use any class in the java.text package.

There is no loss of efficiency in importing the entire package instead of importing
only the classes you use. However, many programmers find that it is an aid to docu-
mentation if they import only the classes they use, which is what we will do in this
book.

Display 2.2 Locale Constants for Currencies of Different Countries

Locale.CANADA Canada (for currency the format is the same as US.)

Locale.CHINA China

Locale.FRANCE France

Locale.GERMANY Germany

Locale.ITALY Italy

Locale.JAPAN Japan

Locale.KOREA Korea

Locale.TAIWAN Taiwan

Locale.UK United Kingdom (English pound)

Locale.US United States

package

import

java.text

import
statement

5640_ch02.fm Page 64 Wednesday, February 11, 2004 2:12 PM

Screen Output 65

In Display 2.1 we also used the class Locale, which is in the java.util package. So,
we also included the following import statement:

import java.util.Locale;

There is one package that requires no import statement. The package java.lang
contains classes that are fundamental to Java programming. These classes are so basic
that the package is always imported automatically. Any class in java.lang does not
need an import statement to make it available to your code. So, when we say that a
class is in the package java.lang, you can simply use that class in your program with-
out needing any import statement. For example, the class String is in the java.lang
package and so you can use it without any import statement.

More material on packages will be given in Chapter 5.

OUTPUTTING AMOUNTS OF MONEY

To output amounts of money correctly formatted, proceed as follows:

Place the following near the start of the file containing your program:

import java.text.NumberFormat;

In your program code, create an object of the class NumberFormat as follows:

NumberFormat formaterObject =
 NumberFormat.getCurrencyInstance();

When outputting numbers for amounts of money, change the number to a value of type
String using the method formaterObject.format, as illustrated in what follows:

double moneyAmount = 9.99;
System.out.println(formaterObject.format(moneyAmount));

The string produced by invocations such as formaterObject.format(moneyAmount) will
add the dollar sign and ensure that there are exactly two digits after the decimal point. (This is
assuming the U.S. dollar is the default currency.)

The numbers formatted in this way may be of type double, int, or long. You may use any (non-
keyword) identifier in place of formaterObject. A complete example is given in Display 2.1.

The above always outputs the money amount in the default currency, which is typically the local
currency. You can specify the country whose currency you want. See the text for details.

java.util

java.lang

5640_ch02.fm Page 65 Wednesday, February 11, 2004 2:12 PM

66 Chapter 2 Console Input and Output

■ THE DecimalFormat CLASS ✜

System.out.println will let you output numbers but has no facilities to format the
numbers. If you want to output a number in a specific format, such as having a speci-
fied number of digits after the decimal point, then you must convert the number to a
string that shows the number in the desired format and then use System.out.println
to output the string. We have seen one way to accomplish this for amounts of money.
The class DecimalFormat provides a very versatile facility to format numbers in a vari-
ety of ways.

The class DecimalFormat is in the Java package named java.text. So, you must add
the following (or something similar) to the beginning of the file with your program or
other class that uses the class DecimalFormat:

import java.text.DecimalFormat;

An object of the class DecimalFormat has a number of different methods that can be
used to produce numeral strings in various formats. In this subsection we discuss one of
these methods, which is named format. The general approach to using the format
method is as follows:

Create an object of the class DecimalFormat, using a String Pattern as follows:

DecimalFormat Variable_Name = new DecimalFormat(Pattern);

For example,

DecimalFormat formattingObject = new DecimalFormat("000.000");

Self-Test Exercises

4. What output is produced by the following code? (Assume a proper import statement has
been given.)

NumberFormat exerciseFormater =
 NumberFormat.getCurrencyInstance(Locale.US);
double d1 = 1.2345, d2 = 15.67890;
System.out.println(exerciseFormater.format(d1));
System.out.println(exerciseFormater.format(d2));

5. Suppose the class Robot is a part of the standard Java libraries and is in the package named
java.awt. What import statement do you need to make the class Robot available to
your program or other class?

import

patterns

5640_ch02.fm Page 66 Wednesday, February 11, 2004 2:12 PM

Screen Output 67

Display 2.3 The DecimalFormat Class (Part 1 of 2)

1 import java.text.DecimalFormat;

2 public class DecimalFormatDemo
3 {
4 public static void main(String[] args)
5 {
6 DecimalFormat pattern00dot000 = new DecimalFormat("00.000");
7 DecimalFormat pattern0dot00 = new DecimalFormat("0.00");

8 double d = 12.3456789;
9 System.out.println("Pattern 00.000");

10 System.out.println(pattern00dot000.format(d));
11 System.out.println("Pattern 0.00");
12 System.out.println(pattern0dot00.format(d));

13 double money = 19.8;
14 System.out.println("Pattern 0.00");
15 System.out.println("$" + pattern0dot00.format(money));
16
17 DecimalFormat percent = new DecimalFormat("0.00%");

18 System.out.println("Pattern 0.00%");
19 System.out.println(percent.format(0.308));

20 DecimalFormat eNotation1 =
21 new DecimalFormat("#0.###E0");//1 or 2 digits before point
22 DecimalFormat eNotation2 =
23 new DecimalFormat("00.###E0");//2 digits before point

24 System.out.println("Pattern #0.###E0");
25 System.out.println(eNotation1.format(123.456));
26 System.out.println("Pattern 00.###E0");
27 System.out.println(eNotation2.format(123.456));

28 double smallNumber = 0.0000123456;
29 System.out.println("Pattern #0.###E0");
30 System.out.println(eNotation1.format(smallNumber));
31 System.out.println("Pattern 00.###E0");
32 System.out.println(eNotation2.format(smallNumber));
33 }
34 }

5640_ch02.fm Page 67 Wednesday, February 11, 2004 2:12 PM

codes67.html

68 Chapter 2 Console Input and Output

The method format of the class DecimalFormat can then be used to convert a floating-
point number, such as one of type double, to a corresponding numeral String follow-
ing the Pattern used to create the DecimalFormat object. Specifically, an invocation of
format takes the form

Decimal_Format_Object.format(Double_Expression)

which returns a String value for a string representation of the value of Double_Expression.
Double_Expression can be any expression, such as a variable or sum of variables, that eval-
uates to a value of type double.

For example, consider the following code:

DecimalFormat formattingObject = new DecimalFormat("000.0000");
String numeral = formattingObject.format(12.3456789);
System.out.println(numeral);

This produces the output

012.3457

Of course, you can use an invocation of format, such as formattingObject.for-
mat(12.3456789), directly in System.out.println. So, the following produces the
same output:

System.out.println(formattingObject.format(12.3456789));

Display 2.3 The DecimalFormat Class (Part 2 of 2)

SAMPLE DIALOGUE

Pattern 00.000
12.346
Pattern 0.00
12.35
Pattern 0.00
$19.80
Pattern 0.00%
30.80%
Pattern #0.###E0
1.2346E2
Pattern 00.###E0
12.346E1
Pattern #0.###E0
12.346E−6
Pattern 00.###E0
12.346E−6

The number is always given, even if this requires
violating the format pattern.

5640_ch02.fm Page 68 Wednesday, February 11, 2004 2:12 PM

Screen Output 69

The format of the string produced is determined by the Pattern string that was used
as the argument to the constructor that created the object of the class DecimalFormat.
For example, the pattern "000.0000" means that there will be three digits before the
decimal point and four digits after the decimal point. Note that the result is rounded
when the number of digits is less than the number of digits available in the number
being formatted. If the format pattern is not consistent with the value of the number,
such as a pattern that asks for two digits before the decimal point for a number like
123.456, then the format rules will be violated so that no digits are lost.

A pattern can specify the exact number of digits before and after the decimal or it
can specify minimum numbers of digits. The character '0' is used to represent a
required digit and the character '#' is used to indicate an optional digit. For example,
the pattern "#0.0##" indicates one or two digits before the decimal point and one, two,
or three digits after the decimal point. The optional digit '#' is shown if it is a nonzero
digit and is not shown if it is a zero digit. The '#' optional digits should go where zero
placeholders would appear in a numeral string; in other words, any '#' optional digits
precede the zero digits '0' before the decimal point in the pattern, and any '#'
optional digits follow the zero digits '0' after the decimal point in the pattern. Use
"#0.0##"; do not use "0#.0##" or "#0.##0".

For example, consider the following code:

DecimalFormat formattingObject = new DecimalFormat("#0.0##");
System.out.println(formattingObject.format(12.3456789));
System.out.println(formattingObject.format(1.23456789));

This produces the output

12.346
1.235

The character '%' placed at the end of a pattern indicates that the number is to be
expressed as a percentage. The '%' causes the number to be multiplied by 100 and
appends a percent sign, '%'. Examples of this and other formatting patterns are given
in Display 2.3.

E-notation is specified by including an 'E' in the pattern string. For example, the
pattern "00.###E0" approximates specifying two digits before the decimal point, three
or fewer digits after the decimal point, and at least one digit after the 'E', as in
12.346E1. As you can see by the examples of E-notation in Display 2.3, the exact
details of what E-notation string is produced can be a bit more involved than our
explanation so far. Here are a couple more details:

The number of digits indicated after the 'E' is the minimum number of digits used
for the exponent. As many more digits as are needed will be used.

The mantissa is the decimal number before the 'E'. The minimum number of sig-
nificant digits in the mantissa (that is, the sum of the number of digits before and
after the decimal point) is the minimum of the number of digits indicated before the

percentages

E-notation

5640_ch02.fm Page 69 Wednesday, February 11, 2004 2:12 PM

70 Chapter 2 Console Input and Output

decimal point plus the maximum of the number of digits indicated after the decimal
point. For example, 12345 formatted with "##0.##E0" is "12.3E3".

To get a feel for how E-notation patterns work, it would pay to play with a few
cases, and in any event, do not count on a very precisely specified number of significant
digits.

JOptionPane
As I sit looking out of a window of the building
I wish I did not have to write the instructions manual...

John Ashbery, The Instruction Manual

Chapters 16–18 describe the most common ways of creating windowing interfaces in
Java. The class JOptionPane can be understood and used without needing the back-
ground given in those chapters. Thus, JOptionPane provides you with a way to get
started doing windowing I/O immediately. This section covers enough about JOption-
Pane to get you started using it.

■ THE BASICS

Display 2.4 contains a demonstration Java program that uses JOptionPane. Following
the program, we show the three windows produced by the program. The three win-
dows are produced one at a time. The user enters a number in the text field of the first
window and then clicks the OK button with the mouse. When the user clicks the OK
button, the first window goes away and the second window appears. The user handles
the second window in a similar way. When the user clicks the OK button in the second
window, the second window goes away and the third window appears. When the user
clicks the OK button in the third window, the third window goes away and that is the
end of this sample program.

As an alternative to clicking the OK button, the user can press the Enter key, which
has the exact same effect as clicking the OK button.

DecimalFormat CLASS

Objects of the class DecimalFormat are used to produce strings of a specified format from

numbers. As such, these objects can be used to format numeric output. The object is associ-

ated with a pattern when it is created using new. The object can then be used with the

method format to create strings that satisfy the format. See Display 2.3 for examples of

using the DecimalFormat class.

2.2

5640_ch02.fm Page 70 Wednesday, February 11, 2004 2:12 PM

JOptionPane 71

Display 2.4 A Program Using JOptionPane (Part 1 of 2)

1 import javax.swing.JOptionPane;

2 public class JOptionPaneDemo
3 {
4 public static void main(String[] args)
5 {
6 String podString =
7 JOptionPane.showInputDialog("Enter number of pods:");
8 int numberOfPods = Integer.parseInt(podString);

9 String peaString =
10 JOptionPane.showInputDialog(
11 "Enter number of peas in a pod:");
12 int peasPerPod = Integer.parseInt(peaString);

13 int totalNumberOfPeas = numberOfPods*peasPerPod;

14 JOptionPane.showMessageDialog(
15 null, "The total number of peas = " + totalNumberOfPeas);

16 System.exit(0);
17 }
18 }

WINDOW 1

WINDOW 2

When the user clicks OK (or presses the Enter key),
the window goes away and the next window (if
any) is displayed.

Required to tell Java where to find the
code for JOptionPane

Needed to end the program if
JOptionPane is used in the program

5640_ch02.fm Page 71 Tuesday, February 17, 2004 5:15 PM

codes71.html

72 Chapter 2 Console Input and Output

The class JOptionPane is in the javax.swing library, which is often referred to sim-
ply as the Swing library. You must have the following line (or something similar) at the
beginning of the file with your program (or other class) that uses JOptionPane:

import javax.swing.JOptionPane;

The following two lines from Display 2.4 are an invocation of the method show-
InputDialog of the class JOptionPane:

String podString =
 JOptionPane.showInputDialog("Enter number of pods:");

This produces a window for obtaining input. The string argument, in this case "Enter
number of pods:", is a prompt written in the window. This invocation of the method
showInputDialog will produce the first window shown in Display 2.4. The user clicks
her or his mouse in the text field and then types in some input. If the user does not like
what she/he typed in, the user can use the Backspace key to back up and retype the
input. Once the user is happy with the input in the window, the user clicks the OK but-
ton and the window goes away.

The method invocation

JOptionPane.showInputDialog("Enter number of pods:")

returns the input that the user typed into the text field. So, the following line from our
program is an assignment statement that sets the variable podString so that it stores the
input string that the user typed into the text field of the first window:

String podString =
 JOptionPane.showInputDialog("Enter number of pods:");

The input produced by JOptionPane.showInputDialog is always a string value. If
you want numeric input, your program must convert the string input into a number

Swing

showInput-
Dialog

Display 2.4 A Program Using JOptionPane (Part 2 of 2)

WINDOW 3

5640_ch02.fm Page 72 Wednesday, February 11, 2004 2:12 PM

JOptionPane 73

(or numbers). The program converts the string stored in the variable podString to an
int and stores the resulting int value in the variable numberOfPods as follows:

int numberOfPods = Integer.parseInt(podString);

The expression Integer.parseInt is explained in Chapter 5 in the subsection entitled
“Wrapper Classes,” but until you cover that material, you can simply note that this
expression converts a number string to the corresponding value of type int.

If you are converting from a string to a number value of some type other than int,
you use the appropriate method from Display 2.5 instead of Integer.parseInt.

The second widow is similar to the first one except that it prompts for a different input.

The following line from the program in Display 2.4 shows the program output,
which is displayed as the third window in that display:

JOptionPane.showMessageDialog(
 null, "The total number of peas = " + totalNumberOfPeas);

The part showMessageDialog is another method in the class JOptionPane. This method
displays a window for showing some output. The method showMessageDialog has two
arguments, which are separated with a comma. For simple programs, you use null as
the first argument. The constant null is discussed in Chapter 5. You probably have not
yet read Chapter 5, but that is not a problem. You can simply insert null in the first
argument position. In this case it is just a placeholder. The second argument is the
string that is written in the output window. The output window stays on the screen
until the user clicks the OK button with the mouse (or alternatively presses the Enter
key), and then the window disappears.

Note that you can give the output string to a showMessageDialog in the same way
that you give an output string as an argument to System.out.println, that is, as a
quoted string, as a variable, as a constant, or as any combination of these connected
with plus signs.

The last program statement, shown in what follows, simply says that the program
should end:

 System.exit(0);

System is a predefined Java class that is automatically provided by Java, and exit is a
method in the class System. The method exit ends the program as soon as it is
invoked. In the programs that we will write, the integer argument 0 can be any integer,
but by tradition we use 0, because, for most operating systems, 0 is used to indicate a
normal ending of the program. When you write a program with a windowing interface,
you always need to end the program with

System.exit(0);

The program will not end automatically when there are no more statements to execute.

Integer.
parseInt

output window

showMessage-
Dialog

null

System.exit

5640_ch02.fm Page 73 Wednesday, February 11, 2004 2:12 PM

74 Chapter 2 Console Input and Output

 If you want to output multiple lines using the method JOptionPane.showMessage-
Dialog, then you can insert the new-line character '\n' into the string used as the sec-
ond argument. If the string becomes too long, which it almost always does with multi-
line output, then you can make each line into a separate string (ending with '\n') and
connect the lines with the plus sign. If the lines are long or there are very many lines,
then the output window will be made larger so that it can hold all the output.

Display 2.5 Methods for Converting Strings to Numbers

TYPE NAME METHOD FOR CONVERTING

byte Byte.parseByte(String_To_Convert)

short Short.parseShort(String_To_Convert)

int Integer.parseInt(String_To_Convert)

long Long.parseLong(String_To_Convert)

float Float.parseFloat(String_To_Convert)

double Double.parseDouble(String_To_Convert)

To convert a value of type String to a value of the type given in the first column, use the method given in
the second column. Each of the methods in the second column returns a value of the type given in the first
column. The String_To_Convert must be a correct string representation of a value of the type given in the
first column. For example, to convert to an int, the String_To_Convert must be a whole number (in the
range of the type int) that is written in the usual way without any decimal point.

THE Cancel BUTTON IN A showInputDialog WINDOW

When you use the method showInputDialog of the class JOptionPane, the input has two but-
tons, one labeled OK and one labeled Cancel. What happens if the user clicks the Cancel but-
ton? Try it and you will see that, as we are using JOptionPane, the program ends with an error
message that may not make sense to you yet. For now you can think of the Cancel button as a
way to cancel (that is, end) the entire program. Later in this book you will learn how to program
the Cancel button to do other things.

(If the Cancel button is clicked, then the method showInputDialog returns something called
null, which we will not discuss until Chapter 5.)

multi-line output

5640_ch02.fm Page 74 Wednesday, February 11, 2004 2:12 PM

JOptionPane 75

JOptionPane FOR WINDOWING INPUT/OUTPUT

You can use the methods showInputDialog and showMessageDialog of the class JOption-
Pane to produce input and output windows for your Java programs. When using these methods,
you must include one of the following two import statements at the start of the file that contains
your program:

import javax.swing.JOptionPane;

or

import javax.swing.*;

The syntax for statements to produce JOptionPane I/O windows is given below:

SYNTAX: (INPUT)

String_Variable = JOptionPane.showInputDialog(String_Expression);

EXAMPLE:

String pinString = JOptionPane.showInputDialog("Enter your PIN:");

The String_Expression is a prompt line displayed in a window that also has both a text field in
which the user can enter input and a button labeled OK. If the user types in a string and clicks the
OK button, then the string that was typed in is returned by the method, and so the string typed in
by the user is stored in the String_Variable. The window disappears when the user clicks the OK
button. As an alternative to clicking the OK button, the user can press the Enter key, which has the
exact same effect as clicking the OK button.

Note that when input is done in this way, all input is string input. If you want the user to input, for
example, integers, then your program must convert the input string numeral to the equivalent
number.

SYNTAX: (OUTPUT)

JOptionPane.showMessageDialog(null, String_Expression);

EXAMPLE:

JOptionPane.showMessageDialog(
 null, pinString + " is not a valid PIN.");

The String_Expression is displayed in a window that has a button labeled OK. When the user clicks
the OK button (or equivalently presses the Enter key), the window disappears.

One additional JOptionPane method that produces a window for yes/no questions is discussed
in the section “Yes/No Questions with JOptionPane ✜ .”

5640_ch02.fm Page 75 Wednesday, February 11, 2004 2:12 PM

76 Chapter 2 Console Input and Output

For example, the following will produce the window shown in Display 2.6, provided
the value of

numberOfPods

 is

5

, the value of

peasPerPod

 is

10

, and the value of

total-

NumberOfPeas

 is

50

:

JOptionPane.showMessageDialog(null,
 "Number of pods = " + numberOfPods + "\n"
 + "Peas per pod = " + peasPerPod + "\n"
 + "The total number of peas = " + totalNumberOfPeas);

■ YES/NO QUESTIONS WITH

JOptionPane

✜

There is a version of

JOptionPane

 that produces a window for asking yes/no questions
of the user. The window has the question text you specify and two buttons labeled

"Yes"

 and

"No"

. For example:

int answer =
 JOptionPane.showConfirmDialog(null,
 "End program?", "Want to end?", JOptionPane.YES_NO_OPTION);
if (answer == JOptionPane.YES_OPTION)//== tests for equality.
 System.exit(0);
else if (answer == JOptionPane.NO_OPTION)
 System.out.println("One more time");
else
 System.out.println("This is impossible");

This code will produce the window shown in Display 2.7. If the user clicks the

"Yes"

button, then the method invocation will return an

int

 value and the window will dis-
appear. Since the value returned was the value

JOptionPane.YES_OPTION

, the multi
branch

if-else

 statement will then invoke

System.exit(0)

 to end the program. If the
user clicks the

"No"

 button, then the method invocation will return the

int

 value

JOp-

tionPane.NO_OPTION

, and then the multi branch

if-else

 statement will invoke

Sys-

tem.out.println

 to write

"One more time"

 to the screen. You can see this code
embedded in a complete program in the file

JOptionPaneYesNoDemo.java

 on the
accompanying CD.

Display 2.6 A Multi-Line Output Window

extra code on CD

5640_ch02.fm Page 76 Tuesday, February 17, 2004 5:20 PM

JOptionPane 77

JOptionPane.showConfirmDialog returns an int value, but you do not want to
think of it as an int but instead think of the returned value as the answer to a yes/no
question. To facilitate this thinking the class JOptionPane defines names for two int
values. The constant JOptionPane.YES_OPTION is the int returned when the "Yes"
button is clicked. The constant JOptionPane.NO_OPTION is the int returned when the
"No" button is clicked. Just which int values are named by JOptionPane.YES_OPTION
and JOptionPane.NO_OPTION? It does not matter. Do not think of them as ints.

We have not developed enough material to allow us to fully explain the list of argu-
ments, but we can explain most of them. Consider the argument list in our example:

 (null, "End program?", "Want to end?", JOptionPane.YES_NO_OPTION)

The string "End program?" may be replaced by any other string and that will then be
the string that appears in the windows with the "Yes" and "No" buttons. Of course, the
string should normally be a yes/no question.

The string "Want to end?" may be replaced by any other string and that will then
be the string displayed as the title of the window.

The last argument JOptionPane.YES_NO_OPTION indicates that you want a window
with "Yes" and "No" buttons. There are other possible options but we will not discuss
them here.

WHY ARE SOME METHODS INVOKED WITH A CLASS NAME INSTEAD OF A
CALLING OBJECT?

Normally, a method invocation uses an object name as a calling object; for example,
greeting.length(), where greeting is a variable of type String. However, when we use
the methods of the class JOptionPane, we use the class name JOptionPane in place of a call-
ing object. What is the story? Some special methods do not require a calling object and are
invoked using the class name. These methods are called static methods and are discussed in
Chapter 5. While these static methods are only a very small fraction of all methods, they are used
for certain fundamental tasks, such as I/O, and so we encountered them early.

Display 2.7 A Yes/No JOptionPane Dialog Window

5640_ch02.fm Page 77 Wednesday, February 11, 2004 2:12 PM

codes77.html

78 Chapter 2 Console Input and Output

The first argument has to do with where the window is placed on the screen, but we
have not developed enough material to allow you to consider the possible options. So for
now, you should simply use null, which is a kind of default value, as the first argument.

Console Input Using BufferedReader
It’s a bit messy, but it works.

Walter Savitch, Absolute Java

You can do a kind of simple console input in Java, but it requires more material than
we have covered at this stage of learning the Java language. So, we will do the console
input in this section using some code that for now you can consider to be just magic
formulas. In Chapters 9 and 10 we will explain these magic formulas.

■ THE BASICS

In Display 2.8 we have rewritten the program in Display 2.4 so that it uses simple con-
sole I/O instead of windowing I/O using JOptionPane.

The code in blue boxes will not be fully explained until Chapters 9 and 10. Until then
you will have to simply use them as magic formulas.

 To do console input, you create an object of the class BufferedReader using the
magic formula

new BufferedReader(new InputStreamReader(System.in))

and you assign this object to a variable of type BufferedReader, so that the whole pro-
cess is done with

BufferedReader keyboard =
 new BufferedReader(new InputStreamReader(System.in));

Since keyboard is an ordinary Java variable, you may use any non-keyword identifier in
place of keyboard.

Self-Test Exercises

6. Write some Java code that will read a line of text and then output the line with all lower-
case letters changed to uppercase. Use JOptionPane.

7. Write some Java code that will set the value of the variable number equal to the number
entered by a user at the keyboard. Assume that number is of type int. Use JOptionPane.

8. Write a complete Java program that reads two whole numbers into two variables of type int,
and then outputs both the whole number part and the remainder when the first number is
divided by the second. This can be done using the operators / and %. Use JOptionPane.

2.3

5640_ch02.fm Page 78 Wednesday, February 11, 2004 2:12 PM

Console Input Using

BufferedReader 79

Once you have an object of type

BufferedReader

 created in this way, you can use
the method

readLine

 to read a line of input, as illustrated by the following line from
Display 2.8:

String podString = keyboard.readLine();

Display 2.8 Console Input with BufferedReader

1 import java.io.BufferedReader;
2 import java.io.InputStreamReader;
3 import java.io.IOException;

4 public class BufferedReaderDemo
5 {
6 public static void main(String[] args) throws IOException
7 {
8 BufferedReader keyboard =
9 new BufferedReader(new InputStreamReader(System.in));

10 System.out.println("Enter number of pods:");
11 String podString = keyboard.readLine();
12 int numberOfPods = Integer.parseInt(podString);

13 System.out.println("Enter number of peas in a pod:");
14 String peaString = keyboard.readLine();
15 int peasPerPod = Integer.parseInt(peaString);

16 int totalNumberOfPeas = numberOfPods*peasPerPod;

17 System.out.print(numberOfPods + " pods and ");
18 System.out.println(peasPerPod + " peas per pod.");
19 System.out.println("The total number of peas = "
20 + totalNumberOfPeas);
21 }
22 }

SAMPLE DIALOGUE

Enter number of pods:
22
Enter number of peas in a pod:
10
22 pods and 10 peas per pod.
The total number of peas = 220

Magic formulas

You do not need System.exit(0);.

5640_ch02.fm Page 79 Tuesday, February 17, 2004 5:20 PM

codes79.html

80 Chapter 2 Console Input and Output

Note that the variable podString is of type String. The method readLine reads an
entire line of keyboard input and returns it as a value of type String.

BufferedReader has no methods for reading numbers. As was true of JOptionPane,
with BufferedReader you read input as a value of type String. If you want a value of
type int, you must convert the string to an int as in the following line from Display 2.8:

int numberOfPods = Integer.parseInt(podString);

Be sure to note that when your program does not use JOptionPane (or one of the
other windowing interfaces we will discuss later in this text), you do not need

System.exit(0);

The program will automatically end when it runs out of statements to execute, as illus-
trated in Display 2.8.

You do not need to understand the magic formulas to do console input using Buff-
eredReader, but it is a bit unsatisfying to leave them as a complete mystery. Before we
end this subsection, let’s give you at least a vague idea of what is going on in those
magic formulas in Display 2.8. We have already given some discussion of the lines

BufferedReader keyboard =
 new BufferedReader(new InputStreamReader(System.in));

System.in looks like the input version of System.out. That is true, but System.in does
not have methods as nice as those in System.out. In particular the object System.in
does not have a readLine method. The rest of this magic formula takes System.in as an
argument and uses it as a basis for creating an object of the class BufferedReader,
which has the nice method readLine.

The three import statements make the three classes we use in the program available.
Since all three classes imported are in the package java.io, you could replace those
three import statements with the following, which imports the entire java.io package:

import java.io.*;

The phrase

throws IOException

tells Java that we are writing code that might “throw an exception of type IOExcep-
tion.” Whenever you are using the method readLine of the class BufferedReader,
there is a chance of throwing an IOException (whatever that is). Our code does not
properly take care of IOException because we have not yet covered exception handling.
The phrase throws IOException simply tells Java we know we have not taken care of
exceptions, in response to which Java says “OK, if you insist, I’ll let you compile this
code.” If we did not include the phrase, our program would not compile. Of course, we
have not yet said what an exception is. Unfortunately, that will have to wait till Chapter 9.

5640_ch02.fm Page 80 Wednesday, February 11, 2004 2:12 PM

Console Input Using BufferedReader 81

Suffice it to say exception handling is a way of preparing in advance for things that
might “go wrong.”

All the details of these magic formulas will be explained in Chapters 9 and 10.

Pitfall

INPUT IN WRONG FORMAT

When using the method readLine of the class BufferedReader for keyboard input or using
JOptionPane for input, your program reads a number as a string and then converts the string to
a value of type int using Integer.parseInt (or using some other method to convert to a value
of some other type, such as double). When doing numeric input in this way, the user must input
the number on a line by itself with nothing else on the line, not even blanks.

If there is a chance that the user will add extra blank space before or after an input number (and
there usually is such a chance), then you should use the String method trim to remove all lead-
ing or trailing blanks. For example, in Display 2.8, it would be good to replace the line

int numberOfPods = Integer.parseInt(podString);

with the following, which includes an invocation of the trim method:

int numberOfPods = Integer.parseInt(podString.trim());

There are ways of having multiple input numbers on the same line, but this simple technique for
doing keyboard input will not handle multiple numbers on a line.

Tip

ECHO INPUT

You should always echo input. That is, you should write to the screen all input that your program
receives from the keyboard. This way the user can check that he or she has entered their input cor-
rectly. For example, the following two statements from the program in Display 2.8 echo the values
that were read for the number of pods and the peas per pod:

System.out.print(numberOfPods + " pods and ");
System.out.println(peasPerPod + " peas per pod.");

(We have not here directly echoed the inputs, which were the values of podString and pea-
String, but this gives us an even better check since it checks the converted input and so also
serves as a check on the conversion from strings to numbers.)

It may seem that there is no need to echo input, since the user’s input is automatically displayed
on the screen as the user enters it. Why bother to write it to the screen a second time? Because the
input might be incorrect even though it looks correct. For example, the user might type a comma
instead of a decimal point or the letter “O” in place of a zero. Echoing the input can reveal such
problems.

echoing input

5640_ch02.fm Page 81 Wednesday, February 11, 2004 2:12 PM

82 Chapter 2 Console Input and Output

KEYBOARD INPUT USING BufferedReader

To do keyboard input using BufferedReader, you must create an object of the class
BufferedReader using the following magic formula:

BufferedReader Name_Of_Object =
 new BufferedReader(new InputStreamReader(System.in));

You can then use the method readLine() with the object to read lines of input. The following
reads an entire line of keyboard input and returns that line as a value of type String:

Name_Of_Object.readLine();

EXAMPLE:

BufferedReader inputObject =
 new BufferedReader(new InputStreamReader(System.in));

String peopleString;
System.out.println("Enter number of people in your party:");
peopleString = inputObject.readLine();

This will only let your program read strings. If you want to input numbers, you must read the
number as a string and convert the string to a number, as in the following example:

int numberOfPeople = Integer.parseInt(peopleString);

Techniques for obtaining numbers of other types are in Display 2.6.

MORE MAGIC FORMULAS

When doing keyboard input in this way, you must have the following import statements at the
start of the file:

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;

Alternatively, you can use the following single import statement in place of these three:

import java.io.*;

Also, the heading for your main method must have the phrase throws IOException added as
follows:

public static void main(String[] args) throws IOException

 For a complete example, see Display 2.8.

5640_ch02.fm Page 82 Wednesday, February 11, 2004 2:12 PM

Console Input Using BufferedReader 83

■ A PREVIEW OF THE StringTokenizer CLASS

When reading keyboard input either with JOptionPane or with BufferedReader and
readLine, the input is always produced as a string value corresponding to a complete
line of input. The class StringTokenizer can be used to decompose this string into
words so that you can treat input as multiple items on a single line. We need the mate-
rial of Chapters 3 and 4 to explain how you use StringTokenizer and so we will post-
pone discussion of the StringTokenizer class until Chapter 4.

Self-Test Exercises

9. In Display 2.8, can you use some name other than keyboard for the object of the class
BufferedReader? For example, can you use inputObject as follows?

BufferedReader inputObject =
 new BufferedReader(new InputStreamReader(System.in));

Of course, assume you also change all occurrences of keyboard.readLine() to
inputObject.readLine().

10. Write some Java code that will read a line of text and then output the line with all lower-
case letters changed to uppercase. Use BufferedReader.

11. Write some Java code that will set the value of the variable number equal to the number
entered by a user at the keyboard. Assume that number is of type int. Use Buffered-
Reader.

12. Write a complete Java program that reads two whole numbers into two variables of type
int, and then outputs both the whole number part and the remainder when the first num-
ber is divided by the second. This can be done using the operators / and %. Use
BufferedReader.

13. Would it be legal to use

int numberOfPods =
 Integer.parseInt(keyboard.readLine());

 in Display 2.8 instead of the following?

String podString = keyboard.readLine();
int numberOfPods = Integer.parseInt(podString);

5640_ch02.fm Page 83 Wednesday, February 11, 2004 2:12 PM

84 Chapter 2 Console Input and Output

Input Using ConsoleIn
I get by with a little help from my friends.

Paul McCartney, A Little Help from My Friends (song)

The class ConsoleIn is a class that has methods for very robust keyboard input of
strings and for each of the primitive types, such as int and double. The class is written
in Java and will be presented and discussed in Chapter 9. However, you need not wait
until Chapter 9 to start using the class ConsoleIn. In this subsection we tell you how to
use this input class. The class is in the file ConsoleIn.java on the CD that comes with
this book. To make it available to your program, place the file in the same directory
(folder) as your program (or other class that uses ConsoleIn) and compile the class Con-
soleIn.java.

■ THE BASICS ✜

You should treat the class ConsoleIn as if it were code that you wrote. For now, that
means the file ConsoleIn.java (on the CD) must be copied to the directory (folder)
that contains your program (or other class that uses ConsoleIn) and that Con-
soleIn.java (as well as your program and other class files) must be compiled. That
way, the byte-code file ConsoleIn.class will be in the same directory as your program
(or other class that uses ConsoleIn). In order to use ConsoleIn, the file Con-
soleIn.class must be in the same directory as the program or class that uses Con-
soleIn. (There are other ways to make ConsoleIn available but they are not discussed
until Chapter 5.)

Using the class ConsoleIn is similar to using the class BufferedReader except that
no import statements are needed and you do not need to create an object of the class
ConsoleIn. Instead you use the class name ConsoleIn in place of a calling object.

The class ConsoleIn has methods that read a piece of data from the keyboard and
return that data. By placing one of these method invocations in an assignment state-

ConsoleIn IS NOT PART OF THE JAVA LANGUAGE

The class ConsoleIn is not part of the Java language and does not come with the Java language.
You must add the class yourself. Think of it as a class that you yourself defined. In Chapter 9 we
will explain the code for ConsoleIn. However, you can already start using the class ConsoleIn
for keyboard input. The code for ConsoleIn is in the file ConsoleIn.java on the CD that
accompanies this book. (The code is also in Appendix 5.) When using the class ConsoleIn, you
should have the compiled byte-code file ConsoleIn.class in the same directory (folder) as the
program (or other class) that uses ConsoleIn.

2.4

extra code on CD

✜

5640_ch02.fm Page 84 Wednesday, February 11, 2004 2:12 PM

Input Using ConsoleIn 85

ment, your program can read from the keyboard and place the data it reads into the
variable on the left-hand side of the assignment operator. For example,

 int amount = ConsoleIn.readLineInt();

will read in one integer and make that integer the value of the variable amount. The
method readLineInt does not use any arguments. That is why there is nothing in the
parentheses after the name readLineInt, but still you must include the parentheses.

The method readLineInt expects the user to input one integer (of type int) on a
line by itself, possibly with space before or after it. If the user inputs anything else, then
an error message will be output to the screen and the user will be asked to reenter the
input. Input is read only after the user starts a new line. So nothing happens until the
user presses the Enter key. This is illustrated in Display 2.9.

What if you want to read in a number of some type other than int? The methods
readLineByte, readLineShort, readLineLong, readLineFloat, and readLineDouble
work in the exact same way, except that they read in values of type byte, short, long,
float, and double, respectively. For example, the following will read a single number
of type double and store that value in the variable measurement:

double measurement = ConsoleIn.readLineDouble();

You can use the method readLineNonwhiteChar to read the first nonwhitespace
character on a line:

char symbol = ConsoleIn.readLineNonwhiteChar();

Whitespace characters are all characters that print as white space if you output them to
paper (or to the screen). The only whitespace characters you are likely to be concerned
with at first are the space (blank) character, the new-line character, and the tab character.

There is a slight difference between readLineNonwhiteChar and the methods that
read a single number. For the methods readLineInt and readLineDouble, the input
number must be on a line with nothing before or after the number, except possibly
white space. The method readLineNonwhiteChar allows anything to be on the line
after the first nonwhitespace character, but ignores the rest of the line. This way, when
the user enters a word like yes, readLineNonwhiteChar can read the first letter, like 'y',
and ignore the rest of the word yes.

If you want to read in an entire line, you would use the method readLine (without
any Int or Double or such at the end). For example,

String sentence = ConsoleIn.readLine();

reads in one line of input and places that string in the variable sentence. The method
readLine of the class ConsoleIn behaves the same as the method readLine of the class
BufferedReader.

The methods in the class ConsoleIn are described in the box entitled “Input Using
ConsoleIn.”

readLineInt

readLine-
Double

whitespace

5640_ch02.fm Page 85 Wednesday, February 11, 2004 2:12 PM

86 Chapter 2 Console Input and Output

Self-Test Exercises

14. Write a Java statement that will set the value of the variable number equal to the number
typed in at the keyboard. Assume that number is of type int and that the input is entered
on a line by itself. Use ConsoleIn.

Display 2.9 Console Input with ConsoleIn

1 public class ConsoleInDemo
2 {
3 public static void main(String[] args)
4 {
5 System.out.println("Enter number of pods:");
6 int numberOfPods = ConsoleIn.readLineInt();

7 System.out.println("Enter number of peas in a pod:");
8 int peasPerPod = ConsoleIn.readLineInt();

9 int totalNumberOfPeas = numberOfPods*peasPerPod;

10 System.out.print(numberOfPods + " pods and ");
11 System.out.println(peasPerPod + " peas per pod.");
12 System.out.println("The total number of peas = "
13 + totalNumberOfPeas);
14 }

15 }

SAMPLE DIALOGUE

Enter number of pods:
22.0
Input number is not in correct format.
The input number must be
a whole number written as an
ordinary numeral, such as 42.
Do not include a plus sign.
Minus signs are OK.
Try again.
Enter a whole number
22
Enter number of peas in a pod:
10
22 pods and 10 peas per pod.
The total number of peas = 220

The file ConsoleIn.class must be in the
same directory as this program.

You do not need
System.exit(0);.

5640_ch02.fm Page 86 Wednesday, February 11, 2004 2:12 PM

codes86.html

Input Using ConsoleIn 87

INPUT USING ConsoleIn

You can use methods of the class ConsoleIn to read a value of a primitive type or of type
String that has been entered at the keyboard. The input must be on a line by itself. In most
cases, leading or trailing whitespace characters are ignored. If the input is entered in an incorrect
format, then an error message is issued and the user is asked to reenter the input line.

SYNTAX:

Byte_Variable = ConsoleIn.readLineByte();
Short_Variable = ConsoleIn.readLineShort();
Int_Variable = ConsoleIn.readLineInt();
Long_Variable = ConsoleIn.readLineLong();
Float_Variable = ConsoleIn.readLineFloat();
Double_Variable = ConsoleIn.readLineDouble();
Boolean_Variable = ConsoleIn.readLineBoolean();
Char_Variable = ConsoleIn.readLineNonwhiteChar();
String_Variable = ConsoleIn.readLine();

EXAMPLE:

int count;
count = ConsoleIn.readLineInt();
long bigOne;
bigOne = ConsoleIn.readLineLong();
float increment;
increment = ConsoleIn.readLineFloat();
double distance;
distance = ConsoleIn.readLineDouble();
char letter;
letter = ConsoleIn.readLineNonwhiteChar();
String wholeLine;
wholeLine = ConsoleIn.readLine();

15. Write a Java statement that will set the value of the variable amount equal to the number
typed in at the keyboard. Assume that amount is of type double and that the input is
entered on a line by itself. Use ConsoleIn.

16. Write a Java statement that will set the value of the variable answer equal to the first non-
whitespace character typed in at the keyboard. The rest of the line of input is discarded.
The variable answer is of type char. Use ConsoleIn.

17. What are the whitespace characters?

18. Is the class ConsoleIn part of the Java language (or does the programmer have to define
the class)?

19. Write some Java code for your program that will read a line of text and then output the
line with all lowercase letters changed to uppercase. Use ConsoleIn.

5640_ch02.fm Page 87 Wednesday, February 11, 2004 2:12 PM

88 Chapter 2 Console Input and Output

■ You can use System.out.println for simple console output.

■ You can use NumberFormat.getCurrencyInstance() to produce an object that can
convert numbers to strings that show the number as a correctly formatted currency
amount, for example, by adding a dollar sign and having exactly two digits after the
decimal point.

■ You can use the class DecimalFormat to output numbers using almost any format
you desire.

■ You can use JOptionPane for windowing I/O.

■ You can use BufferedReader for simple console input.

■ As an optional alternative to BufferedReader, you can use the class ConsoleIn for
keyboard input. The class ConsoleIn is not in the Java standard libraries, but it is
written in Java and is provided on the CD accompanying this book.

ANSWERS TO SELF-TEST EXERCISES

1. System.out.println("May the hair on your toes");
System.out.println("grow long and curly.");

2. System.out.println ends a line of input, so the next output goes on the next line. With
System.out.print, the next output goes on the same line.

3. 2 2
4

Note that

 2 + " " + 2

contains a string, namely " ". So, Java knows it is supposed to produce a string. On the
other hand, 2 + 2 contains only integers. So, Java thinks + denotes addition in this second
case and produces the value 4 to be output.

4. $1.23
$15.68

5. Either

import java.awt.Robot;

or

import java.awt.*;

Chapter Summary

5640_ch02.fm Page 88 Wednesday, February 11, 2004 2:12 PM

Answers to Self-Test Exercises 89

6. String rawString =
 JOptionPane.showInputDialog("Enter some text:");
String uppercaseString = rawString.toUpperCase();
JOptionPane.showMessageDialog(
 null, "In uppercase:\n" + uppercaseString);

7. String numberString =
 JOptionPane.showInputDialog("Enter a number:");
int number = Integer.parseInt(numberString);

8. import javax.swing.JOptionPane;

public class JOptionPaneExercise
{
 public static void main(String[] args)
 {
 String numeratorString =
 JOptionPane.showInputDialog("Enter numerator:");
 int numerator = Integer.parseInt(numeratorString);

 String denominatorString =
 JOptionPane.showInputDialog("Enter denominator:");
 int denominator =
 Integer.parseInt(denominatorString);

 JOptionPane.showMessageDialog(null,
 numerator + " divided by " + denominator
 + " is " + numerator/denominator
 + "\nwith a remainder of " + (numerator % denominator);

 System.exit(0);
 }
}

9. Yes, it is a variable name and so can be any legal identifier that is not a keyword.

10. import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;

public class BufferedReaderExercise
{
 public static void main(String[] args) throws IOException
 {
 BufferedReader console = new BufferedReader(
 new InputStreamReader(System.in));

5640_ch02.fm Page 89 Wednesday, February 11, 2004 2:12 PM

90 Chapter 2 Console Input and Output

 System.out.println("Enter a line of text:");
 String line = console.readLine();
 String uppercaseLine = line.toUpperCase();
 System.out.println("In all uppercase that is:");
 System.out.println(uppercaseLine);
 }
}

11. BufferedReader console = new BufferedReader(
 new InputStreamReader(System.in));

System.out.println("Enter a whole number:");
String numberString = console.readLine();
int number = Integer.parseInt(numberString);

12. import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;

public class BufferedReaderExercise2
{
 public static void main(String[] args) throws IOException
 {
 BufferedReader console = new BufferedReader(
 new InputStreamReader(System.in));

 System.out.println(
 "Enter two whole numbers on two lines:");
 String numeratorString = console.readLine();
 int numerator = Integer.parseInt(numeratorString);

 String denominatorString = console.readLine();
 int denominator =
 Integer.parseInt(denominatorString);

 System.out.println(numerator + " divided by " + denominator
 + " is " + (numerator / denominator)
 + "\nwith a remainder of " + (numerator % denominator));
 }
}

13. Yes, it would be legal, and the resulting program would be equivalent to the one in Display
2.8.

14. number = ConsoleIn.readLineInt();

15. amount = ConsoleIn.readLineDouble();

5640_ch02.fm Page 90 Wednesday, February 11, 2004 2:12 PM

Programming Projects 91

16. answer = ConsoleIn.readLineNonwhiteChar();

17. The whitespace characters are the blank, the tab, the new-line character, '\n', and all
other characters that print as white space on (white) paper.

18. The class ConsoleIn is not part of the Java language. The programmer (like you) is sup-
posed to define the class ConsoleIn. To make your life easier, we have defined it for you.

19. System.out.println("Enter a line of text:");
String line = ConsoleIn.readLine();
String uppercaseString = line.toUpperCase();

System.out.println("In all uppercase that is:");
System.out.println(uppercaseString);

PROGRAMMING PROJECTS

1. Write a program that will read in two integers and output their sum, difference, and prod-
uct. Do two versions: one version uses JOptionPane for I/O, the other uses Buffered-
Reader for I/O. If you covered ConsoleIn, do a third version using ConsoleIn.

2. An automobile is used for commuting purposes. Write a program that will take as input
the distance of the commute in miles, the automobile’s fuel consumption rate in miles per
gallon, and the price of a gallon of gas. The program then outputs the cost of the commute.
Do two versions: one version uses JOptionPane for I/O, the other uses BufferedReader
for I/O. If you covered ConsoleIn, do a third version using ConsoleIn.

3. The straight-line method for computing the yearly depreciation in value D for an item is
given by the formula

where P is the purchase price, S is the salvage value, and Y is the number of years the item is
used. Write a program that takes as input the purchase price of an item, the expected num-
ber of years of service, and the expected salvage value. The program then outputs the yearly
depreciation for the item. Do two versions: one version uses JOptionPane for I/O; the
other uses BufferedReader for I/O. If you covered ConsoleIn, do a third version using
ConsoleIn.

4. (This is a version with input of an exercise from Chapter 1.) A government research lab has
concluded that an artificial sweetener commonly used in diet soda pop will cause death in
laboratory mice. A friend of yours is desperate to lose weight but cannot give up soda pop.
Your friend wants to know how much diet soda pop it is possible to drink without dying as
a result. Write a program to supply the answer. The input to the program is the amount of
artificial sweetener needed to kill a mouse, the weight of the mouse, and the desired weight

D P S–
Y

------------=

5640_ch02.fm Page 91 Wednesday, February 11, 2004 2:12 PM

project91a.html
project91b.html
project91a.html

92 Chapter 2 Console Input and Output

of the dieter. Assume that diet soda contains 1/10th of one percent artificial sweetener. Use
a named constant for this fraction. You may want to express the percent as the double
value 0.001. Do two versions: one version uses JOptionPane for I/O, the other uses
BufferedReader for I/O. If you covered ConsoleIn, do a third version using ConsoleIn.

5. Write a program that determines the change to be dispensed from a vending machine. An
item in the machine can cost between 25 cents and a dollar, in 5-cent increments (25, 30,
35, . . ., 90, 95, or 100), and the machine accepts only a single dollar bill to pay for the
item. For example, a possible sample dialog might be

Enter price of item
(from 25 cents to a dollar, in 5-cent increments): 45

You bought an item for 45 cents and gave me a dollar,
so your change is

2 quarters,
0 dimes, and
1 nickel.

The sample dialog is for BufferedReader or ConsoleIn for input and Sys-
tem.out.println for output. However, you may use JOptionPane if you prefer.

6. Write a program that reads in a line of text and then outputs that line of text first in all
uppercase letters and then in all lowercase letters. Do two versions: one version uses JOp-
tionPane for I/O, the other uses BufferedReader for I/O. If you covered ConsoleIn,
do a third version using ConsoleIn.

7. (This is a version with input of an exercise from Chapter 1.) Write a program that reads in
a line of text and then outputs that line of text with the first occurrence of "hate" changed
to "love". For example, a possible sample dialog might be

Enter a line of text.
I hate you.
I have rephrased that line to read:
I love you.

You can assume that the word "hate" occurs in the input. If the word "hate" occurs
more than once in the line, your program will replace only the first occurrence of "hate".
The sample dialog is for BufferedReader or ConsoleIn for input and Sys-
tem.out.println for output. However, you may use JOptionPane if you prefer.

5640_ch02.fm Page 92 Wednesday, February 11, 2004 2:12 PM

project92a.html
project92b.html

	code links 2:
	code links 1:
	code links 3:
	code links 6:
	program project 2:
	1b:
	1:
	5:
	6:

	code links 4:
	code links 5:

